Advances in Process Technology of Sepiolite Mineral Fibrous Materials

Article Preview

Abstract:

Inorganic nanofibers are characterized by small size effect, quantum size effect and surface effect. Inorganic nanofibers and polymer form polymer and inorganic nanocomposites, which has become an active research area and showed good development and application prospects. As a typical type of inorganic fibrous minerals, sepiolite group mineral fibrous materials can not maximize nano-effect due to small particle size, high specific surface area, high surface energy and easy reunion of inorganic nanofibers. Based on the above reasons, this paper systematically summarizes the processing technologies of sepiolite group mineral fibrous materials, and proposes the suitable processing technology of batch production of sepiolite group mineral fibrous materials at low cost based on the analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Rodriguez-Reinoso, M. Molina-Sabio and J. C. Gonzalez: Carbon, Vol. 39(2001), p.776.

Google Scholar

[2] R. M. Celis, C. Hermosin and J. Cornejo: Environ. Sci. Technol., Vol. 34(2000), p.4593.

Google Scholar

[3] R. Giora, T. Dvora and S. Carina: Apply Clay Science, Vol. 20(2002), p.273.

Google Scholar

[4] I. U. Halil and E. Baki: Apply Clay Science, Vol. 12(1998), p.419.

Google Scholar

[5] J. C. Gonzalez and M. Molina: Applied Clay Science, Vol. 20(2001), p.111.

Google Scholar

[6] A. Sun, J. B. Caillerie and J. J. Fripiat: Microporous Materials, Vol. 5(1995), p.135.

Google Scholar

[7] A. Steudel, L.F. Batenburg, H.R. Fischer, P.G. Weidler and K. Emmerich: Applied Clay Science, Vol. 44(2009), p.95.

DOI: 10.1016/j.clay.2009.02.001

Google Scholar

[8] E. Sabah: Journal of Colloid and Interface Science, Vol. 310(2007), p.1.

Google Scholar

[9] I. Dekany, L. Turi, A. Fonseca and J. B. Nagy: Applied Clay Science, Vol. 14(1999), p.141.

Google Scholar

[10] E. Sabah, M. Turan and M. S. Celik: Water Research, Vol. 36(2002), p.3957.

Google Scholar

[11] J. L. Valentin, M. A. Lopez-Manchado, A. Rodriguez, P. Posadas and L. Ibarra: Applied Clay Science, Vol. 36(2007), p.245.

Google Scholar

[12] A. A. Goktas, Z. Misirli and T. Baykara: Ceramics International, Vol. 23(1997), p.305.

Google Scholar

[13] A. Kilislioglu and G. Aras: Applied Radiation and Isotopes, Vol. 68(2010), p. (2016).

Google Scholar

[14] A. Torro-Palau, J. C. Fernandez-Garcia, A. C. Orgiles-Barcelo, M. M. Pastor-Blas and J. M. Martin-Martinez: International Journal of Adhesion and Adhesives, Vol. 17(1997), p.111.

DOI: 10.1163/156856197x00345

Google Scholar

[15] M. Cinar, G. Ersever, O. Şahbaz and M. S. Çelik: Applied Clay Science, Vol. 53(2011), p.386.

Google Scholar

[16] A. S. Ozcan and O. Gok: Journal of Molecular Structure, Vol. 1007(2012), p.36.

Google Scholar

[17] L. I. Vico and S. G. Acebal: Applied Clay Science, Vol. 33(2006), p.142.

Google Scholar

[18] M. Villamiel, N. Corzo, M. I. Foda, F. Montes and A. Olano: Food Chemistry, Vol. 76(2002), p.7.

Google Scholar

[19] M. A. Fuente, M. Juarez, D. Rafael and A. Olano: Food Chemistry, Vol. 66(1999), p.301.

Google Scholar

[20] V. P. Samusikov: Russian Geology and Geophysics, Vol. 51(2010), p.266.

Google Scholar

[21] R. O. Rye: Chemical Geology, Vol. 215(2005), p.5.

Google Scholar

[22] K. P. Liu, P. F. Lu, H. Gong and J. E. Zhou: Mining R& D, Vol. 24(2004), p.25.

Google Scholar

[23] H. Yin, J. S. Liang, Q. G. Tang, G. C. Liang, L. J. Wang and G. S. Li: J. Synth. Cryst, Vol. 34(2005), p.519.

Google Scholar

[24] M. Clement and E. Huwald: Journal of Mineral Processing, Vol. 5(1978), p.199.

Google Scholar

[25] J. Cornejo and M C Hermosin: Clay Minerals, Vol. 23(1988), p.39.

Google Scholar

[26] M. Oja and R. Tuunila: Developments in Mineral Processing, Vol. 13(2000), p.64.

Google Scholar