FEM Analysis of Extrusion of Triangular Sections from Round Billets through Curved Dies

Article Preview

Abstract:

The curved die plays a significant role in reduction of extrusion load, refinement of microstructure and improvement in quality of product. In the present investigation, a numerical FEM modeling has been carried out for extrusion of triangular section from round billet through a curved die using DEFORM-3D software for steady state deformation using rigid plastic material. The extrusion load has been predicted. The effective stress, strain, strain rate velocity and temperature distribution have been determined. An experimental test rig has been fabricated. The experimental results are compared with the theoretical results. The results of computations are found to be in good agreement with those of the experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-396

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Azad-Noorani, M., Jooybari-Bakhshi, M., Hosseinipour, S.J. and Gorji, A. (2005), Experimental & merical study of optimal die profile in cold forward rod extrusion of Al, journal of Materials Processing Technology, Vol. 164-165, pp.1572-1577.

DOI: 10.1016/j.jmatprotec.2005.02.019

Google Scholar

[2] Knoerr, M., Lee, J. and Altan, T. (1992), Application of the 2D finite element method to simulation of various forming processes, journal of Materials Processing Technology, Vol. 33 (1-2), pp.31-55.

DOI: 10.1016/0924-0136(92)90310-o

Google Scholar

[3] Kim, H., Sweeney, K. and Altan, T. (1994), Application of computer aided simulation to investigate metal flow in selected forging operations, journal of Materials Processing Technology. Vol. 46 (1-2), pp.127-154.

DOI: 10.1016/0924-0136(94)90107-4

Google Scholar

[4] Kang, B. -Soo, Min-Kim, B. and Choi, J.C. (1994), Perform design in extrusion by the FEM and its experimental confirmation, journal of Materials Processing Technology, Vol. 41 (2), pp.237-248.

DOI: 10.1016/0924-0136(94)90064-7

Google Scholar

[5] Kang, C. G., Jung, Y. J. and Kwon, H. C. (2002), Finite element simulation of die design for hot extrusion process of AL/Cu clad composite and its experimental investigation, journal of Materials Processing Technology, Vol. 124, pp.49-56.

DOI: 10.1016/s0924-0136(02)00106-1

Google Scholar

[6] Kumar, S. and Prasad, S. K. (2004), Feature based design of extrusion process using Upper-bound and Finite element techniques for extrudable shapes, journal of Materials Processing Technology, Vol. 155-156, pp.1365-1372.

DOI: 10.1016/j.jmatprotec.2004.04.213

Google Scholar

[7] Kumar, S. and Prasad, S. K. (2004), A Finite Element Thermal Model for Axisymmetric Cold and Hot Extrusion using Upper Bound Technique, Journal of the Institution of Engineers (India), Vol. 85 (MC 2), pp.59-68.

Google Scholar

[8] Reinikainen, T., Andersson, K., Kivivuori, S. and Korhonen, A. S. (1992), Finite –element analysis of Copper extrusion process, journal of Materials Processing Technology, Vol. 34 (1-4), pp.101-108.

DOI: 10.1016/0924-0136(92)90095-a

Google Scholar

[9] Reddy, V. N., Dixit P.M. and Lal, G.K. (1995), Die design for axisymmetric extrusion, journal of Materials Processing Technology, Vol. 55 (3-4), pp.331-339.

DOI: 10.1016/0924-0136(95)02027-6

Google Scholar

[10] Reddy, V. N. Sethuraman, R. and Lal, G.K., (1996), Upper-bound and FE analysis of axisymmetric hot extrusion, journal of Materials Processing Technology, Vol. 57 (1-2), pp.14-22.

DOI: 10.1016/0924-0136(95)02040-3

Google Scholar

[11] Reddy, N. V., Dixit, P.M. and Lal, G.K. (1996), Analysis of axisymmetric tube extrusion, International journal of Machine Tools and Manufacture, Vol. 36 (2), pp.1253-1267.

DOI: 10.1016/0890-6955(95)00079-8

Google Scholar

[12] Saboori, M., Bakhshi-Jooybari, M., Gorgi, A. and Noorani-Azad, M. (2006), Experimental and Numerical study of energy consumption in Forward and Backward rod extrusion, journal of Materials Processing Technology, Vol. 177, pp.612-616.

DOI: 10.1016/j.jmatprotec.2006.04.031

Google Scholar

[13] Ulysee, P. (2002), Extrusion dies design for flow balance using FE and optimization methods, International journal of Mechanical Science, Vol. 44 (2), pp.319-341.

DOI: 10.1016/s0020-7403(01)00093-5

Google Scholar

[14] Yang, D.Y., Lee, C.M. and Yoon, J. H. (1989), Finite Element Analysis of steady state three- dimensional extrusion of sections through curved dies, International journal of Mechanical Science, Vol. 31 (2), pp.145-156.

DOI: 10.1016/0020-7403(89)90075-1

Google Scholar

[15] Narayanasamy, R., Srinivasan, P., Venkatesan R. and Ponalagusamy, R. (2000), Computer aided design of streamlined extrusion dies for square cross section, Metform, MIT, Chennai.

DOI: 10.1016/j.matdes.2006.07.016

Google Scholar

[16] Gunasekera, J. S. and Hoshino, S., Analysis of extrusion of polygonal sections through streamlined dies, Journal of Engineering for Industry, Transactions ASME, 107(N3), 1985, pp.229-233.

DOI: 10.1115/1.3185991

Google Scholar