[1]
J. Reiter, J. Velicka, and M. Mika, Proton-conducting polymer electrolytes based on methacrylates, Electrochimica Acta 53 (2008) 7769-7774.
DOI: 10.1016/j.electacta.2008.05.066
Google Scholar
[2]
W. Wieczorek and J.R. Stevens, Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4, Polymer 38 (1996) 2057-2065.
DOI: 10.1016/s0032-3861(96)00776-8
Google Scholar
[3]
S.A. Hashmi, A. Kumar, K.K. Maurya and S. Chandra, Proton-conducting polymer electrolyte I: the polyethylene oxide + NH4ClO4 system, J. Phys. D: Appl. Phys. 23 (1990) 1307-1314.
DOI: 10.1088/0022-3727/23/10/007
Google Scholar
[4]
N. Agmon, The Grotthuss mechanism, Chemical Physics Letters 244 (1995) 456-462.
DOI: 10.1016/0009-2614(95)00905-j
Google Scholar
[5]
S. Rudhziah, N. Muda, S. Ibrahim, A.A. Rahman, and N.S. Mohamed, Studies on proton conducting polymer electrolytes based on PVDF-HFP and PVDF-HFP/PEMA blend, Sains Malaysian 40 (2011) 707–712.
DOI: 10.4028/www.scientific.net/amr.287-290.100
Google Scholar
[6]
N. Muda, N. Kamarulzaman and N.S. Mohamed, PVDF/HFP-NH4CF3SO3-SiO2 nanocomposite polymer electrolytes for protonic electrochemical cells, Key Engineering Materials: Composite Science and Technology 471-472 (2011) 373-378.
DOI: 10.4028/www.scientific.net/kem.471-472.373
Google Scholar
[7]
S.K. Deraman, N.S. Mohamed and R.H.Y. Subban, Structural and electrical properties of PVC-NH4CF3SO3-EC proton conducting electrolyte system, Advanced Materials Research: Applications of Engineering Materials (2011) 287-290.
DOI: 10.4028/www.scientific.net/amr.287-290.2240
Google Scholar
[8]
S.F. Mohamad, R. Idris and N.S. Mohamed, Conductivity studies on ENR based proton conducting polymer electrolytes, Advanced Materials Research: Material and Manufacturing Technology 129-131 (2010) 61-65.
DOI: 10.4028/www.scientific.net/amr.129-131.561
Google Scholar
[9]
J.B. Wagner, and C. Wagner, Electrical conductivity measurements on cuprous halides, J. Chem. Phys. 26 (1957) 1597.
Google Scholar
[10]
M. Şenel, A. Bozkurt and A. Baykal, An investigation of the proton conductivities of hydrated poly(vinyl alcohol)/boric acid complex electrolytes, Ionics 13 (2007) 263-266.
DOI: 10.1007/s11581-007-0100-4
Google Scholar
[11]
G. Hirankumar, S. Selvasekaranpandian, N. Kuwata, J. Kawamura and T. Hattori, Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes, J. Power Sources 144 (2005) 262-267.
DOI: 10.1016/j.jpowsour.2004.12.019
Google Scholar
[12]
R. Kumar, A. Subramani, N.T. Kalyana Sundaram, G. Vijaya Kumar and I. Baskaran, Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte, Journal of Membrane Science 300 (2007) 104–110.
DOI: 10.1016/j.memsci.2007.05.014
Google Scholar
[13]
Y. Lin, L. Qi, D. Chen and F. Wan, Comblike polymer electrolyte with main chain glass transition near room temperature, Solid State Ionics 90 (1996) 307-313.
DOI: 10.1016/s0167-2738(96)00393-1
Google Scholar
[14]
T. Miyamoto and K. Shibayama, Free-volume model for ionic conductivity in polymers, J. Appl. Phys. 44 (1973) 5372.
Google Scholar
[15]
R. Baskaran, S. Selvasekarapandian, G. Hirankumar and M.S. Bhuvaneswar, Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)-N,N-dimethylformamide-LiClO4 polymer gel electrolytes, Journal of Power Sources 134 (2004) 235-240.
DOI: 10.1016/j.jpowsour.2004.02.025
Google Scholar
[16]
C.V. Subba Reddy, A.K. Sharma and V.V.R. Narasimha Rao, Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO3) electrolyte, J. Power Sources 114 (2003) 338.
DOI: 10.1016/s0378-7753(02)00582-7
Google Scholar
[17]
R.G. Linford. In Chowdari, B.V.R. & Radhakrisna, Experimental techniques for studying polymer electrolytes (ed.) Solid State Devices, S. Singapore: World Scientific: (1998) pp.551-571.
Google Scholar