Effect of Annealing temperature on the Structural and Magnetic Properties of TbxY3-xFe5O12(x = 0.0, 1.0, 2.0) Thin Films Prepared by Sol-Gel Process

Article Preview

Abstract:

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-241

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Vaqueiro, M.A. Lopez Quin, J.Rivas, J.M. Greneche, Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process, J. Magn. Magn. Mater.169 (1997) 56-69.

DOI: 10.1016/s0304-8853(96)00728-7

Google Scholar

[2] M. Jafelicei R.H.M. Godoi, Preparation and characterization of sperical yttrium iron garnet via coprecipitation, J. Magn. Magn. Mater. 226-230 (2001)1421-1423.

DOI: 10.1016/s0304-8853(00)00996-3

Google Scholar

[3] S. Geller, M.A. Gilloe, The crystal structure and ferrimagnetism of yttrium- iron garnet, Y3Fe2(FeO4)3, J. Phys. Chem. Solids. 3(1957) 30-36.

DOI: 10.1016/0022-3697(57)90044-6

Google Scholar

[4] T.-C. Mae, J.-C.Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic, J. Magn. Magn. Mater. 302 (2006) 74-81

DOI: 10.1016/j.jmmm.2005.08.018

Google Scholar

[5] D. Rodic, A. Szytula, Z. Tomkowicz, M. Guillot, H. Le Gall, Temperature dependence of lattice constant and thermal expantion coefficient of terbium-yttrium iron garnet, J. Magn. Magn. Mater. 75 (1988) 79-87.

DOI: 10.1051/jphyscol:19888448

Google Scholar

[6] Z.Cheng, H.Yang, Y.Cui, L.Yu, X. Zhao, S.Feng, Synthesis and magnetic properties of Y3-xDyx Fe5O12 nanoparticles,J. Magn. Magn. Mater. 308 (2007) 5-9.

Google Scholar

[7] S.Ramadan N.B. Ibrahim, M.Abdullah.Ftema.W, The physical properties of eribium – doped yttrium iron Grnet films prepared by sol-gel method, J. Nanomaterials 2012 (2011) 1-5.

DOI: 10.1155/2012/524903

Google Scholar

[8] P. Vaqueiro M.P. Crosnier, M.A. Lopea Quin, Synthesis and characterization pf yttrium iron garnet nanoparticles, J. Solid. State.Chem. 126 (1996) 161-168.

DOI: 10.1006/jssc.1996.0324

Google Scholar

[9] M. Guillot, A. Marchand, J.M. Desvignes, H. Le Gall, T. Merceron, M. Guillaud, High magnetic field properties of mixed terbium -yttrium ferrite garnet, J. Z. Phys. B.74 (1989) 335-339.

DOI: 10.1007/bf01307881

Google Scholar

[10] J.F. Dillon, JR, L.R Walker, Ferrimagnetic resonance in rare- earth -doped yttrium iron garnet. III. linewidth, J. Phys. Rev. 127 (1962) 1495-1501.

DOI: 10.1103/physrev.127.1495

Google Scholar

[11] H. Xu, H. Yang, W.Xu, L. Yu,Magnetic properties of Bi-doped Y3Fe5O12 nanoparticles, J. Curr. Appl. Phys. 8(2008)1-5.

Google Scholar

[12] S. Hosseini Vajargah, H.R.M. Hosseini, Z.A. Nemati, Synthesis of nanocrystalline yttrium iron garnets by sol-gel combustion process: The influence of pH of precursor solution, J.Mater.Sci. Eng B.129 (2006) 211-215.

DOI: 10.1016/j.mseb.2006.01.014

Google Scholar

[13] Y.-P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5-xCrxO12 ferrite, J. Mater. Chem. Phys.115 (2009) 334-338.

Google Scholar

[14] V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structurel Characterization of Materials, 2nd ed., Springer, New York, 2009.

Google Scholar

[15] J.A. Toledo, M.A. Valenzuela, P. Bosch, H. Armendáriz, N. Nava, A. Vazquez, Effect of Al3+ introduction into hydrothermally prepared ZnFe2O4, J. Appl. Cata A, 198 (2000) 235-245.

DOI: 10.1016/s0926-860x(99)00514-1

Google Scholar

[16] P. B.Dunbar, M.K. David, J.T. Duglas, Surface tension evolution during early stages of drying of sol-gel coatings, J. Sol-Gel. Sci.Tech.49 (2009) 233-237.

DOI: 10.1007/s10971-008-1849-2

Google Scholar

[17] R.D. Sanhez, J. Rivas, M.A. Lopez Quin, D. Caeiro, Particle size effects on magnetic properties of yttrium iron garnet prepared by a sol-gel method, J. Magn. Magn. Mater. 247 (2002) 92-98.

DOI: 10.1016/s0304-8853(02)00170-1

Google Scholar

[18] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol-gel route of synthesis of nanoparticles of MgFe2O12 and XRD,FTIR and VSM study, J. Magn. Magn. Mater. 320 (2008) 2774-2779.

DOI: 10.1016/j.jmmm.2008.06.012

Google Scholar