Elastic Properties of MgB2 and SiC-Doped MgB2 Superconductors

Article Preview

Abstract:

We investigated the elastic properties of MgB2 and 5 wt.% SiC-doped MgB2 superconductors utilizing the pulse-echo overlap technique. Longitudinal and shear ultrasound velocities were measured for each sample at 80 K and 300 K. The measured velocities at 80 K were used to calculate the various elastic moduli, i.e. longitudinal (CL), shear (G), bulk (B) and Young’s (Y) modulus, and the Debye temperature D, for both samples. The high D at 694 K and 706 K obtained for MgB2 and SiC-doped MgB2, respectively, provide strong evidences via direct acoustic measurements to support numerous theoretical and non-acoustic data-based calculations. At 300 K, the higher longitudinal velocity of the pure MgB2 compared to the doped MgB2 but converging towards the same value of longitudinal modulus at 80 K, seems to suggest that the SiC-doped MgB2 undergoes greater elastic stiffening through temperature range of 300 K down to 80 K. Using the D values, the electron-phonon coupling constant  was calculated within the BCS framework and the two dimensional van Hove scenario. The results led us to conclude that MgB2 is a moderately-strong coupled superconductor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-308

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63.

DOI: 10.1038/35065039

Google Scholar

[2] S'L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield, Boron isotope effect in superconducting MgB2, Phys. Rev. Lett. 86 (2001) 877.

Google Scholar

[3] H. Schmidt, J.S. Zasadzinski, K.E. Gray, D.G. Hinks, Energy gap from tunneling and metallic contacts onto MgB2: Possible evidence for a weakened surface layer, Phys. Rev. B 63 (2001) 220504.

DOI: 10.1103/physrevb.63.220504

Google Scholar

[4] H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, J. Akimitsu, Evidence for Strong-Coupling s-Wave Superconductivity in MgB2: 11B NMR Study, Phys. Rev. Lett. 87 (2001) 127001.

DOI: 10.1016/s0921-4534(02)01376-x

Google Scholar

[5] Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Electron-phonon interaction in the normal and superconducting states of MgB2, Phys. Rev. B 64 (2001) 205011.

Google Scholar

[6] R. Abd-Shukor, Calculated elastic properties of MgB2 at the superconducting transition, Solid State Communications 122 (2002) 503.

DOI: 10.1016/s0038-1098(02)00191-6

Google Scholar

[7] W.L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167 (1968) 331.

Google Scholar

[8] K.Y. Tan, K.L. Tan, K.B. Tan, K.P. Lim, S.A. Halim, S.K. Chen, Enhanced critical current density in MgB2 superconductor via Si and C coadditions, J. Supercond. Nov. Magn. 24 (2011) 2025.

DOI: 10.1007/s10948-011-1162-0

Google Scholar

[9] J.H. Lim, J.H. Shim, J.H. Choi, J.H. Park, W. Kim, J. Joo, C.J. Kim, Effects of nano-carbon doping and sintering temperature on microstructure and properties of MgB2, Physica C 469 (2009) 1182.

DOI: 10.1016/j.physc.2009.05.193

Google Scholar

[10] M. Levy, M-F. Xu, B.K. Sarma, Ultrasonic propagation in sintered high-Tc superconductors, in: M. Levy (Ed.), Ultrasonics of high- Tc and other unconventional superconductors, Academic Press Inc., London, 1992, pp.237-301.

DOI: 10.1016/b978-0-12-477920-4.50011-3

Google Scholar

[11] T. Ichitsubo, H. Ogi, S. Nishimura, T. Seto, M. Hirao, H. Inui, Elastic stiffness and ultrasonic attenuation of superconductor MgB2 at low temperatures, Physical Review B 66 (2002) 052514.

DOI: 10.1103/physrevb.69.099901

Google Scholar

[12] L. Shao-Chun, W. Ru-Ju, L. Feng-Ying, L. Zhen-Xing, Z. Jia-Lin, Y. Ri-Cheng, J. Chang-Qing, Ultrasonic properties of the MgB2 superconductor, Chin. Phys. Lett. 18 (2001) 1369.

DOI: 10.1088/0256-307x/18/10/322

Google Scholar

[13] T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, J.S. Abell, Compressibility and electronic structure of MgB2 up to 8 GPa, Phys. Rev. B 63 (2001) 220505.

Google Scholar

[14] R. Abd-Shukor, Acoustic Debye temperature and the role of phonons in cuprates and related superconductors, Supercond. Sci. Technol. 15 (2002) 435.

DOI: 10.1088/0953-2048/15/3/330

Google Scholar

[15] C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. & Technol. 14 (2001) R115.

DOI: 10.1088/0953-2048/14/11/201

Google Scholar

[16] J.S. Schilling, J.D. Jorgensen, D.G. Hinks, S. Demyad, J. Hamlin, C.W. Looney,T. Tomita, Hydrostatic pressure dependence of the superconducting and structural properties of MgB2, cond-mat/0110268.

Google Scholar

[17] R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, D.G. Hinks, Phonon density of states in MgB2, Phys. Rev. Lett. 87 (2001) 017005.

Google Scholar