Effects of Fe3O4 Nano Particles Addition in High Temperature Superconductor YBa2Cu3O7-δ

Article Preview

Abstract:

The effects of nano particles Fe3O4 addition on the superconducting and transport properties of YBa2Cu3O7-δ (YBCO) were studied. YBa2Cu3O7-δ superconductor powders were prepared by using high purity oxide powders via solid state reaction method. Nano Fe3O4 with 0.01 – 0.05 wt.% with average size 28 nm was added into YBCO. The transition temperatures (Tc) of the samples were measured by using four point probe method. The critical current (Ic) of the samples has been determined by using the 1 μV/cm criterion from 30 – 77 K. Sample with 0.02 wt.% nano Fe3O4 showed the highest Tc at 87 K. It is interesting to note the same sample also exhibited the highest Jc at 77 K up to 1683 mA/cm2. Nano Fe3O4 has acted as effective flux pinning centers in YBCO. A small amount of nano particles Fe3O4 addition has successfully improved the superconducting and transport properties of YBCO. The excessive addition of nano Fe3O4 (> 0.02 wt.%) suppressed the Tc and Jc. Overall, Jc decreases with increasing temperature (30 – 77 K) as a consequence of thermally activated flux creep. Magnetic impurities normally suppress superconductivity. However, by adding magnetic nano particles, current carrying capacity of superconductors YBCO was enhanced significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-313

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, K.L. Meng, L.Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett. 58 (1987) 908-910.

DOI: 10.1103/physrevlett.58.908

Google Scholar

[2] T.A. Campbell, T.J. Haugan, I. Maartense, J. Murphy, L. Brunke, P.N. Barnes, Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO Thin Films, Physica C 423 (2005) 1- 8.

DOI: 10.1016/j.physc.2004.09.018

Google Scholar

[3] L.M. Paulius, C.C. Almasan, M.B. Maple, On the determination of the fully critical field and critical current density from the Bean model, Phys. Rev. B 47 (1993) 11627.

DOI: 10.1063/1.110504

Google Scholar

[4] Z.H. He, T. Habisreuther, G. Bruchlos, D. Litzkendorf, W. Gawalek, Investigation of microstructure of textured YBCO with addition of nanopowder SnO2, Physica C 356 (2001) 277-284.

DOI: 10.1016/s0921-4534(01)00282-9

Google Scholar

[5] X.W. Cao, Z.H. Wang, K.B. Li, Critical current density and flux pinning in vortex liquid regime for YBa2Cu3O7−δ epitaxial thin films, Physica C, 305 (1998) 68-74.

DOI: 10.1016/s0921-4534(98)00305-0

Google Scholar

[6] A. Mellekh, M. Zouaoui, F. Ben Azzouz, M. Annabi, M. Ben Salem, Nano Al2O3 particle addition effects on YBaCu2Oy superconducting properties, Sol. Stat. Commun. 149 (2006) 318-323.

DOI: 10.1016/j.ssc.2006.08.008

Google Scholar

[7] H. Takuya, Y. Katsuku, The effects of Pr-doping on the critical current density in YBa2Cu3O7-δ, Physica C 383 (2002) 48-54.

Google Scholar

[8] S. Dadras, Y. Liu, Y.S Chai, V. Daadmehr, K.H. Kim, Increase of critical current density with doping carbon nano-tubes in YBa2Cu3O7−δ, Physica C 469 (2009) 55-59.

DOI: 10.1016/j.physc.2008.11.004

Google Scholar

[9] A. Ramzi, A. Taoufik, S. Senoussi, A. Tirbiyine, A. Abaragh, The critical current density Jc in high quality YBa2Cu3O7-δ thin films, Physica A, 358 (2005) 119-122.

DOI: 10.1016/j.physa.2005.06.012

Google Scholar

[10] I.F. Lyuksyutov, D.G. Naugle, Frozen flux superconductors, Mod. Phys. Lett. B, 13B (1999) 491-508.

DOI: 10.1142/s0217984999000622

Google Scholar

[11] K.T. Lau, S.Y. Yahya, R. Abd-Shukor, Enhanced Flux Pinning in Ag-Sheathed Bi(Pb)-Sr-Ca-Cu-O Superconductors Tapes with Addition of Magnetic Nanorod γ-Fe2O3, J. Appl. Phys. 99 (2006) 123904-1-4.

DOI: 10.1063/1.2204761

Google Scholar

[12] R. Abd-Shukor, W. Kong, Magnetic field dependent critical current density of Bi-Sr-Ca-Cu-O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles, J. Appl. Phys. 105 (2009) 07E311-2.

DOI: 10.1063/1.3070628

Google Scholar

[13] R. Abd-Shukor, W. Kong, Nanoparticles as flux pinning centre in bulk and Ag sheathed Bi1·6Pb0·4Sr2Ca2Cu3O10 high temperature superconductor tapes, Mat. Res. Innov. 13(3) (2009) 1-3.

DOI: 10.1179/143307509x441676

Google Scholar

[14] B.A. Glowacki, M. Majoros, A.M. Campbell, S.C. Hopkins, N.A. Rutter, G. Kozlowski, T. L. Peterson, Influence of magnetic materials on the transport properties of superconducting composite conductors, Supercond. Sci. Technol. 22 (2009) 034013-1-10.

DOI: 10.1088/0953-2048/22/3/034013

Google Scholar

[15] W. Kong, R. Abd-Shukor, Enhanced electrical transport properties of nano NiFe2O4 added  (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor, J. Supercond. Nov. Mag. 23 (2010) 257-263.

DOI: 10.1007/s10948-009-0524-3

Google Scholar

[16] S. Terzieva, A. Stoyanova, K, Zalamova, V. Mikli, Ch. Angelov, V, Kovachev, Morphology of Y1Ba2Cu3Oz and Y0.7Ca0.3Ba2Cu3Oz Bulk Samples Depending on Ca-substitution, J. Optoelec. Adv. Mat. 7 (2005) 477-480.

Google Scholar

[17] O. Perner, W. Habler, J. Eckert, C. Fischer, C. Mickel, G. Fuchs, B. Holzapfel, L. Schultz, Effects of Oxide Particle Addition on Superconductivity in Nanocrystalline MgB2 Bulk Samples, Physica C 432 (2005) 15-24.

DOI: 10.1016/j.physc.2005.07.005

Google Scholar