Effect of Sm-Doping on Magnetic and Dielectric Properties of BiFeO3

Article Preview

Abstract:

Polycrystalline Bi1-xSmxFeO3 multiferroic samples in the range 0 ≤ x ≤ 0.1 were prepared via solid state reaction method. The effect of samarium ion (Sm3+) doping at the bismuth site in multiferroic BiFeO3 structure and its relation with magnetic and dielectric properties were investigated. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Impedance Analyzer were used to characterize the structure and the properties of the composition. The XRD results showed that all the compounds are rhombohedral distorted perovskite structure (R3C). The average grain size identified by SEM were 2.61 µm and decreased to 1.18 µm by introducing the element of Sm doping. At room temperature, all samples showed a spontaneous magnetization which was enhanced by doping with Sm3+ ion. The dielectric constant and dielectric loss decreased inversely proportional to the frequency from 102 to 106 Hz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-333

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V.Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R.Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science 299, 5613 (2003) 1719–1722

DOI: 10.1126/science.1080615

Google Scholar

[2] Z. X. Cheng and X. L. Wang, Room Temperature Magnetic-Field Manipulation of Electrical Polarization in Multiferroic Thin-Film Composite BiFeO3/La0.67 Ca0.67MnO3, Phys. Rev. B 75 (2007) 172406-4

Google Scholar

[3] C. Chen, J. Cheng, S. Yu, L. J. Che and Z. Y. Meng, Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites, J. Cryst. Growth 291 (2006) 135-139.

DOI: 10.1016/j.jcrysgro.2006.02.048

Google Scholar

[4] M. B. Bellakki, V. Manivannan, C. Madhu and A. Sundaresan, Synthesis and Magnetic Properties of BiFeO3 and Bi0.98Y0.02FeO3, Mater. Chem. Phys. 116 (2009) 599-602.

DOI: 10.1016/j.matchemphys.2009.05.001

Google Scholar

[5] T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh and S. S. Wong, Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 nanoparticles, Nano Lett. 7, 3 (2007) 766-772

DOI: 10.1021/nl063039w

Google Scholar

[6] A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui and A. Burger, Magnetic and Electrical Properties of Single-Phase Multiferroic BiFeO3, J. Appl. Phys. 97 (2005) 093903-4

DOI: 10.1063/1.1881775

Google Scholar

[7] Y. H. Lee, J. M. Wu and C. H. Lai, Influence in La doping in multiferroic properties of BiFeO3 Thin Films, Appl. Phys. Lett. 88 (2006) 042903-3

DOI: 10.1063/1.2167793

Google Scholar

[8] K. S. Nalwa, A. Garg and A. Upadhyaya, Effect of Samarium Doping on the Properties of Solid-State Synthesized Multiferroic Bismuth Ferrite, Mater. Lett. 62 (2008) 878-881

DOI: 10.1016/j.matlet.2007.07.002

Google Scholar

[9] D. Maurya, H. Thota, K. S. Nalwa, A. Garg, BiFeO3 Ceramics Synthesized by Mechanical Activation Assisted versus Conventional Solid-State-Reaction Process: A Comparative Study, J. Alloys and Compd. 477 (2009) 780-784.

DOI: 10.1016/j.jallcom.2008.10.155

Google Scholar

[10] V. Sepelak, K. D. Becker, Z. A. Munir, Mechanochemistry and Mechanical Alloying, J.Mater Sci. 39 (2004) 4983-5530.

Google Scholar