Strain Modification of Band Edge Energies in a Pyramidal InAs-GaAs Quantum Dot System

Article Preview

Abstract:

We present the calculated band edge energies altered by strain in a nanostructure system of a pyramidal InAs quantum dot buried in a GaAs substrate. Our zinc-blende supercell system of dimension 11.9 nm × 11.9 nm × 8.5 nm and 55119 atoms contains a pyramidal In770As886 quantum dot of 1656 atoms with height of 3.03 nm and square base of length 6.06 nm. The strain energy of this nanostructure system is minimized by employing the Keating formulation of interatomic potential and Monte Carlo relaxation method via the Metropolis algorithm. This relaxation is run for 20 million Monte Carlo steps at simulation temperature of 4.2 K. The calculated strain is then used to determine the conduction and valence band edge energies of the nanostructure. We find that along the [001] growth direction in the InAs quantum dot region, strain increases the conduction band edge energy by 0.6 eV and in the valence band strain results in relatively sharp wells at the dot base for heavy holes and at the dot tip for light holes. Thus, our calculation predicts that strain leads to increased band gap and spatial splitting of holes in this nanostructure system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-341

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures, Springer, Berlin, 2004.

Google Scholar

[2] C. Pryor, Eight band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations, Phys. Rev. B 57 (1998) 7190-7195.

DOI: 10.1103/physrevb.57.7190

Google Scholar

[3] G. Gopir, G. H. Ripan, A. P. Othman, Monte Carlo minimization of energy in semiconductor quantum dots, J. Fiz. Mal. 26 (2005) 97-103.

Google Scholar

[4] H. Jiang, J. Singh, Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study, Phys. Rev. B 56 (1997) 4696-4701.

DOI: 10.1103/physrevb.56.4696

Google Scholar

[5] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, A. Zunger, Comparison of two methods for describing the strain profiles in quantum dots, J. App. Phys. 83 (1998) 2548-2554.

DOI: 10.1063/1.366631

Google Scholar

[6] C. G. Van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39 (1989) 1871-1883.

DOI: 10.1103/physrevb.39.1871

Google Scholar

[7] H. W. Su, A. Zunger, Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering, Phys. Rev. B 49 (1994) 14337-14351.

DOI: 10.1103/physrevb.49.14337

Google Scholar

[8] M. Grundmann, O. Stier, D. Bimberg, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons and electronic structure, Phys. Rev. B 52 (1995) 11969-11981.

DOI: 10.1103/physrevb.52.11969

Google Scholar

[9] M. A. Cusack, P. R. Briddon, M. Jaros, Electronic structure of InAs/GaAs self-assembled quantum dots, Phys. Rev. B 54 (1996) R2300-R2303.

DOI: 10.1103/physrevb.54.r2300

Google Scholar

[10] A. J. Williamson, A. Zunger, InAs quantum dots: Predicted electronic structure of free-stranding versus GaAs embedded structures, Phys. Rev. B 59 (1999) 15819-15824.

DOI: 10.1103/physrevb.59.15819

Google Scholar