Effect of Pressure on Structural, Electronic and Elastic Properties of Cubic (Pm3m) SnTiO3 Using First Principle Calculation

Article Preview

Abstract:

The electronic band structure, density of state and elastic properties of lead-free perovskite oxide SnTiO3 (ST) were investigated by employing first principles calculation using the Density Functional Theory (DFT) within local density approximation (LDA). The energy band gap was calculated from the separation between the Ti 3d (conduction band) and the maximum of O 2p (valence band). This gives an indirect band gap of 2.36 eV. The elastic constants and their pressure dependence were calculated up to 30 GPa and the independent elastic constants (C11, C12, and C44), bulk modules, B were obtained and analyzed. The results showed that SnTiO3 have a mechanical stability in cubic phase (Pm3m).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

342-346

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.N. Yakovkin, M. Gutowski, SrTiO3/ Si (001) epitaxial interface: A density functional theory stud, Phys. Rev. B 70 (2004) 165319-1/7

Google Scholar

[2] R.A. Evarestov, V.P. Smirnov, D.E. Usvyat, Local properties of the electronic structure cubic SrTiO3,BaTiO3and PbTiO3 crystals, analysed using Wannier-type atomic functions, Solid State Comm. 127 (2003) 423-426

DOI: 10.1016/s0038-1098(03)00453-8

Google Scholar

[3] J.F. Scott, Ferroelectric Memories. Dekker, New York (2000)

Google Scholar

[4] R. Guo, C-A. Wang, A.Yang, Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics, Journal of the European Ceramic Society 31 (2011) 605-609

DOI: 10.1016/j.jeurceramsoc.2010.10.019

Google Scholar

[5] J. Jiang, H-J. Jung, S-G.Yoon, Epitaxial PMN–PT thin films grown on buffered Si substrates using ceramic and single-crystal target, Journal of Alloys and Compounds 509 (2011) 6924-6929

DOI: 10.1016/j.jallcom.2011.04.002

Google Scholar

[6] S. F.Matar, I.Baraille, M. A.Subramaniam, First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material, Chemical Physics 355(2009) 43-49

DOI: 10.1016/j.chemphys.2008.11.002

Google Scholar

[7] Y.Uratani, T.Shishidou, T.Oguchi , First-Principles Study of Lead-Free Piezoelectric SnTiO3, Jpn. J. Appl. Phys 47(2008)7735-7739

DOI: 10.1143/jjap.47.7735

Google Scholar

[8] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M C Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[9] D. M.Ceperley, B. J.Alder, Ground State of the Electron Gas by a Stochastic Method Phys. Rev. Lett 45(1980)566-569

DOI: 10.1103/physrevlett.45.566

Google Scholar

[10] J. P.Perdew , A.Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(1981)5048-5079

DOI: 10.1103/physrevb.23.5048

Google Scholar

[11] D.Venderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B 41(1990) 7892-7895

DOI: 10.1103/physrevb.41.7892

Google Scholar

[12] C.A. Ponce, R.A. Casali, M.A. Caravaca, Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase, J. Phys.: Condens. Mater 20 (2008) 045213-1/6

DOI: 10.1088/0953-8984/20/04/045213

Google Scholar

[13] A. Bouhemadou, R. Khenata, M. Chegaar, S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg, Phys. Lett. A 371 (2007) 337-343

DOI: 10.1016/j.physleta.2007.06.030

Google Scholar

[14] V. Milman, M. C. Warren, Elastic properties of TiB2 and MgB2, J. Phys.: Condens. Matter, 13(2001) 5585-5595

Google Scholar

[15] S. Yip, J. Li, M. Tang, J. Wang, Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals, Mater. Sci. Eng. A 317 (2001) 236–240

DOI: 10.1016/s0921-5093(01)01162-5

Google Scholar

[16] G.V Sin'ko. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys. Condens. Matter. 14 (2002)6989-7005

DOI: 10.1088/0953-8984/14/29/301

Google Scholar

[17] X.S. Xu, T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Optical Properties and Magnetochromism in Multiferroic BiFeO3, Phys. Rev. B 79 (2009) 134425-1/4

DOI: 10.1103/physrevb.79.134425

Google Scholar