[1]
I.N. Yakovkin, M. Gutowski, SrTiO3/ Si (001) epitaxial interface: A density functional theory stud, Phys. Rev. B 70 (2004) 165319-1/7
Google Scholar
[2]
R.A. Evarestov, V.P. Smirnov, D.E. Usvyat, Local properties of the electronic structure cubic SrTiO3,BaTiO3and PbTiO3 crystals, analysed using Wannier-type atomic functions, Solid State Comm. 127 (2003) 423-426
DOI: 10.1016/s0038-1098(03)00453-8
Google Scholar
[3]
J.F. Scott, Ferroelectric Memories. Dekker, New York (2000)
Google Scholar
[4]
R. Guo, C-A. Wang, A.Yang, Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics, Journal of the European Ceramic Society 31 (2011) 605-609
DOI: 10.1016/j.jeurceramsoc.2010.10.019
Google Scholar
[5]
J. Jiang, H-J. Jung, S-G.Yoon, Epitaxial PMN–PT thin films grown on buffered Si substrates using ceramic and single-crystal target, Journal of Alloys and Compounds 509 (2011) 6924-6929
DOI: 10.1016/j.jallcom.2011.04.002
Google Scholar
[6]
S. F.Matar, I.Baraille, M. A.Subramaniam, First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material, Chemical Physics 355(2009) 43-49
DOI: 10.1016/j.chemphys.2008.11.002
Google Scholar
[7]
Y.Uratani, T.Shishidou, T.Oguchi , First-Principles Study of Lead-Free Piezoelectric SnTiO3, Jpn. J. Appl. Phys 47(2008)7735-7739
DOI: 10.1143/jjap.47.7735
Google Scholar
[8]
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M C Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[9]
D. M.Ceperley, B. J.Alder, Ground State of the Electron Gas by a Stochastic Method Phys. Rev. Lett 45(1980)566-569
DOI: 10.1103/physrevlett.45.566
Google Scholar
[10]
J. P.Perdew , A.Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(1981)5048-5079
DOI: 10.1103/physrevb.23.5048
Google Scholar
[11]
D.Venderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B 41(1990) 7892-7895
DOI: 10.1103/physrevb.41.7892
Google Scholar
[12]
C.A. Ponce, R.A. Casali, M.A. Caravaca, Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase, J. Phys.: Condens. Mater 20 (2008) 045213-1/6
DOI: 10.1088/0953-8984/20/04/045213
Google Scholar
[13]
A. Bouhemadou, R. Khenata, M. Chegaar, S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg, Phys. Lett. A 371 (2007) 337-343
DOI: 10.1016/j.physleta.2007.06.030
Google Scholar
[14]
V. Milman, M. C. Warren, Elastic properties of TiB2 and MgB2, J. Phys.: Condens. Matter, 13(2001) 5585-5595
Google Scholar
[15]
S. Yip, J. Li, M. Tang, J. Wang, Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals, Mater. Sci. Eng. A 317 (2001) 236–240
DOI: 10.1016/s0921-5093(01)01162-5
Google Scholar
[16]
G.V Sin'ko. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys. Condens. Matter. 14 (2002)6989-7005
DOI: 10.1088/0953-8984/14/29/301
Google Scholar
[17]
X.S. Xu, T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Optical Properties and Magnetochromism in Multiferroic BiFeO3, Phys. Rev. B 79 (2009) 134425-1/4
DOI: 10.1103/physrevb.79.134425
Google Scholar