Effect of in Concentration on the Optical Lattice Vibrations in Quaternary AlxInyGa1-x-yN Alloys

Article Preview

Abstract:

Fourier transform infrared (FTIR) spectroscopy has been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxlnyGa1-x-yN thin films at room temperature. The AlxlnyGa1-x-yN films were grown on c-plane (0001) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with indium (In) mole fraction y = 0.0 to 0.10 and constant aluminium (Al) mole fraction x = 0.06. The experimental results indicated that the AlxlnyGa1-x-yN alloys had two-mode behavior, for the A1 (LO) and E1 (TO) modes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-285

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nakamura, T Mukai, M. Senoh. Candela-class high-brightness InGaN/AIGaN double- heterostructure bluelight- emitting diodes, J. Appl. Phys. 76 (1994) 8189.

DOI: 10.1063/1.111832

Google Scholar

[2] I. Akasaki, H. Amano. Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters, Jpn. J. Appl. Phys. 36 (1997) 5393.

DOI: 10.1143/jjap.36.5393

Google Scholar

[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, T. Mukai. Blue InGaN-based laser diodes with an emission wavelength of 450 nm, J. Appl. Phys. 76 (2000) 22.

DOI: 10.1063/1.125643

Google Scholar

[4] H. Hirayama, A. Kinoshita, T. Yamabi, Y. Enomoto, A. Hirata, T. Araki, Y. Nanishi, Y. Aoyagi, Marked enhancement of 320-360nm ultraviolet emission in quaternary InxAlyGa1-x -yN with In-segregation effect, Appl. Phys. Lett. 80 (2002) 207.

DOI: 10.1063/1.1433162

Google Scholar

[5] H. Hirayama. Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes, J. Appl. Phys. 97 (2005) 091101.

DOI: 10.1063/1.1899760

Google Scholar

[6] M.R. Correia, S. Pereira, E. Pereira, J. Frandon, E. Alves, Raman study of the A1(LO) phonon in relaxed and pseudomorphic InGaN epilayers, Appl. Phys. Lett. 83 (2003) 4761.

DOI: 10.1063/1.1627941

Google Scholar

[7] H. K. Cho, K. H. Lee, S. W. Kim, K. S. Park, Y. H. Cho , J. H. Lee. Influence of growthtemperature and reactor pressure on microstructural and optical properties of InAlGaN quanternary epilayers, J. Crystal Growth. 267 (2004) 67.

DOI: 10.1016/j.jcrysgro.2004.03.061

Google Scholar

[8] M. E. Aumer, S. F. LeBoeuf, F. G. McIntosh, S. M. Bedair, High optical quality AlInGaN by metalorganic chemical vapor deposition, Appl. Phys. Lett. 75(1999) 3315–3317.

DOI: 10.1063/1.125336

Google Scholar

[9] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, H. X. Jiang, Growth and optical properties of In Al Ga N quaternary alloys, Appl. Phys. Lett. 78 (2001) 61–63.

DOI: 10.1063/1.1331087

Google Scholar

[10] A. Cros, A. Cantarero, N.T. Pelekanos, A. Georgakilas, J. Pomeroy, M. Kuball, Resonant Raman characterization of InAlGaN/GaN heterostructures. Phys. Status Solidi (b), 243 (2006)1674.

DOI: 10.1002/pssb.200565132

Google Scholar

[11] M. Schubert, T.E. Tiwald, C.M. Herzinger, Infrared dielectric anisotropy and phonon modes of sapphire, Phys. Rev. B 61 (2000) 8187.

DOI: 10.1103/physrevb.61.8187

Google Scholar

[12] M. Kazan, P. Masri, M. Sumiya, Zone center optical phonons in AlxGa1−xN mixed crystals, J. Appl. Phys. 100 (2006) 013508.

DOI: 10.1063/1.2209557

Google Scholar