Study on Dielectric Relaxation in BiFeO3/Bi3.25La0.75Ti3O12 Film

Article Preview

Abstract:

BiFeO3 (BFO) film is considered as relaxor ferroelectric film with a leakage current, and Bi3.25La0.75Ti3O12 (BLT) film is regarded as ferroelectric film with a leakage current. Maxwell- Wagner (M-W) theory has been used to study the dielectric relaxation behavior of BiFeO3 (BFO)/Bi3.25La0.75Ti3O12 (BLT) films grown on Pt/Ti/SiO2/Si substrate. Results show that the characteristics of BFO film significantly affect the dielectric relaxation behavior of the BFO/BLT film. The theoretical results agree well with the experimental data when the temperature is above 400K. It is inferred that the polycrystalline orientation of BFO film leads to the presence of disorganized polar nanoregions (PNRs) in BFO film. And BFO film exhibits relaxation characteristics at high temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-86

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liben Li, Fengzhen Huang, Xiaomei Lu, Jingsong Zhu, Integrated Ferroelectrics.110 (2009) 25-33.

Google Scholar

[2] D. H. Wang, L. Yan, C. K. Ong, Y. W. Du, Appl. Phys. Lett. 89 (2006) 182905.

Google Scholar

[3] S.K. Singh, K.Maruyama, H.Ishiwara, Integrated Ferroelectrics. 98 (2008) 83-89.

Google Scholar

[4] S.Habouti, R.K. Shiva1, C-H. Solterbeck1, M. Es-Souni1, V. Zaporojtchenko, J.Appl.Phys. 102(2007)044113-044119.

Google Scholar

[5] IgorA. Kornev, S.Lisenkov, R.Haumont, B.Dkhil, L.Bellaiche, Phys.Rev.Lett. 99 (2007) 227602-227607.

Google Scholar

[6] S. K. Singh, H. Funakuba, H. Uchida, H. Ishiwara, Integrated Ferroelectrics. 76 (2005) 139-146.

DOI: 10.1080/10584580500413855

Google Scholar

[7] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science. 299 (2003) 1719.

DOI: 10.1126/science.1080615

Google Scholar

[8] Q. Jiang and J. H. Qiu, J. Appl. Phys. 99 (2006) 103901.

Google Scholar

[9] Y. Chen, J. Wang, M. Liu, J. Lou, N. X. Sun, C. Vittoria, V. G. Harris, Appl. Phys. Lett.93 (2008) 112502.

Google Scholar

[10] C. C. Homes, T. Vogt, S. M.Shapiro, S.Wakimoto, A.P. Ramirez, Science.27 (2001) 293.

Google Scholar

[11] Fengzhen Huang, Xiaomei Lu, Weiwei Lin, Wei Cai, Xiumei Wu, Yi Kan, Hai Sang, and Jinsong Zhu, Appl. Phys. Lett.90 (2007) 252903.

Google Scholar

[12] Sitchai Hunpratub, Prasit Thongbai, Teerapon Yamwong, Rattikorn Yimnirun, Santi Maensiri,Appl. Phys. Lett. 94 (2009) 06290.

Google Scholar

[13] T. B. Adams, D. C. Sinclair, and A. R. West, Phys. Rev. B 73 (2006) 094124.

Google Scholar

[14] Xiao-Yu Zhang, Qing Song, Feng Xu, C. K. Ong, Appl. Phys. Lett. 94 (2009) 022907.

Google Scholar

[15] L. E. Cross and R. C. Pohanka, Mat. Res. Bull. 6 (1971) 939-950.

Google Scholar

[16] Di Wu, Aidong Li, Naiben Ming, J. Appl. Phys. 97 (2005) 106110.

Google Scholar