[1]
E. Gershon, U. Shaked, N. Berman, Control and Estimation of State-Multiplicative Stochastic Systems with Delay, IEEE Trans. on Automat. Contr., vol. 52(2007), pp.329-334.
DOI: 10.1109/tac.2007.904618
Google Scholar
[2]
E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems and Control Letters, Vol. 43 (2001), pp.309-319.
DOI: 10.1016/s0167-6911(01)00114-1
Google Scholar
[3]
Moon Y. S, Park P, W. H. Kwon, Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, Vol. 74 (2001), pp.1447-1455.
DOI: 10.1080/00207170110067116
Google Scholar
[4]
C. Peng, Y. C. Tian, Networkedcontrol of linear systems with state quantization, Information Sciences, Vol. 177 (2007), pp.5763-5774, in Chinese.
DOI: 10.1016/j.ins.2007.05.025
Google Scholar
[5]
E. Tian, D. Yue, C. Peng, Quantized output feedback control for networked control systems, Information Sciences, Vol. 178(2008), pp.2734-2749, in Chinese.
DOI: 10.1016/j.ins.2008.01.019
Google Scholar
[6]
C. De Persis, D. Nesic, Practical encoders for controlling nonlinear systems under communication constraints, Systems and Control Letters, Vol. 57(2008), pp.654-662.
DOI: 10.1016/j.sysconle.2008.01.010
Google Scholar
[7]
M. Tabbara, D. Nesic, Input-output stability of networked control systems with stochastic protocols and channels, IEEE Trans. Automatic Control, Vol. 53 (2008), pp.1160-1175.
DOI: 10.1109/tac.2008.923691
Google Scholar
[8]
He Y, Wu M, She J H, et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems and Control Letters. Vol. 51(2004), pp.57-65, in Chinese.
DOI: 10.1016/s0167-6911(03)00207-x
Google Scholar
[9]
Y. Zhang, D. Yue, E. Tian, New stability criteria of neural networks with interval time-varying delay: A piecewise delay method, Applied Mathematics and Computation. Vol. 208(2009), pp.249-259, in Chinese.
DOI: 10.1016/j.amc.2008.11.046
Google Scholar
[10]
M. Basin, J. Perez, and R. Martinez-Zuniga, Optimal filtering for nonlinear polynomial systems over linear observations with delay, Int. J. Innov. Comput., Inf. Control, Vol. 2(2006), pp.863-874.
Google Scholar
[11]
Y. He, Q. G. Wang, L. H. Xie, and C. Lin, Further improvement of freeweighting matrices technique for systems with time-varying delay, IEEE Trans. Autom. Control, Vol. 52(2007), pp.293-299, in Chinese.
DOI: 10.1109/tac.2006.887907
Google Scholar