Structures, Stabilites and Electronic Properties of Phenyl Silsesquioxanes Si2nO3nPh2n (n=1-5): A DFT Study

Article Preview

Abstract:

Density functional theory (DFT) calculations are performed to investigate the structures of phenyl silsesquioxanes Si2nO3nPh2n (n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the phenyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.14 to 6.30 eV, imply optimal electronic structures for these molecules. The energy differences between the possible conformers of same size phenyl silsesquioxanes are small.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 503-504)

Pages:

450-454

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.D. Lickiss, F. Rataboul: Adv. Organomet. Chem. Vol. 57 (2008), p.1.

Google Scholar

[2] D.B. Cordes, P.D. Lickiss and F. Rataboul: Chem. Rev. Vol. 110 (2010), p. (2081).

Google Scholar

[3] T.C. Ionescu, F. Qi, C. McCabe, A. Striolo, J. Kieffer and P.T. Cummings: J. Phys. Chem. B Vol. 110 (2006), p.2502.

Google Scholar

[4] A. Lee, J.D. Lichtenhan: J. Appl. Polym. Sci. Vol. 73 (1999), p. (1993).

Google Scholar

[5] F.J. Feher, D.A. Newman and J.F. Walzer: J. Am. Chem. Soc. Vol. 111 (1989), p.1741.

Google Scholar

[6] N. Maxim, P.C. Magusin, P.J. Kooyman, J.H. van Wolput, R.A. van Santen and H.C.L. Abbenhuis: J. Phys. Chem. B Vol. 106 (2002), p.2203.

Google Scholar

[7] A.R. Bassindale, D.J. Parker, M. Pourny, P.G. Taylor, P.N. Horton and M.B. Hursthouse: Organometallics Vol. 23 (2004), p.4400.

Google Scholar

[8] J. Choi, J. Harcup, A.F. Yee, Q. Zhu and R.M. Laine: J. Am. Chem. Soc. Vol. 123 (2001), p.11420.

Google Scholar

[9] A. Sellinger, R.M. Laine: Macromolecules Vol. 29 (1996), p.2327.

Google Scholar

[10] J. Choi, S.G. Kim and R.M. Laine: Macromolecules Vol. 37 (2004), p.99.

Google Scholar

[11] M.Z. Asuncion, R.M. Laine: Macromolecules Vol. 40 (2007), p.555.

Google Scholar

[12] P.D. Lickiss, F. Rataboul: Adv. Organomet. Chem. Vol. 57 (2008), p.1.

Google Scholar

[13] D.A. Wann, R.J. Less, F. Rataboul, P.D. McCaffrey, A.M. Reilly, H.E. Robertson, P.D. Lickiss and D.W.H. Rankin: Organometallics Vol. 27 (2008), p.4183.

DOI: 10.1021/om800357t

Google Scholar

[14] D.A. Wann, C.N. Dickson, P.D. Lickiss, H.E. Robertson and D.W.H. Rankin: Inorg. Chem. Vol. 50 (2011), p.2988.

Google Scholar

[15] A.V. Zakharov, S.L. Masters, D.A. Wann, S.A. Shlykov, G.V. Girichev, S. Arrowsmith, D.B. Cordes, P.D. Lickiss and A.J.P. White: Dalton Trans. Vol. 39 (2010), p.6893.

DOI: 10.1039/c000664e

Google Scholar

[16] C. -G. Zhang, R.W. Zhang, Z. -X. Wang, Z. Zhou, S.B. Zhang and Z.F. Chen: Chem. Eur. J. Vol. 15 (2009), p.5910.

Google Scholar

[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian03, revision E. 01. Gaussian, Inc., Wallingford, CT (2004).

Google Scholar

[18] D.A. Wann, F. Rataboul, A.M. Reilly, H.E. Robertson, P.D. Lickiss and D.W.H. Rankin: Dalton Trans. (2009), p.6843.

DOI: 10.1039/b909136j

Google Scholar