Influence of Sn Content on Microstructure and Mechanical Properties of Ti-35wt%Nb Alloy

Article Preview

Abstract:

The influence of Sn content on the microstructure and mechanical properties of Ti-35Nb-XSn (X=0, 3, 6, 9) alloy was investigated in this paper. It is shown that Ti35Nb alloy is composed of β, α and α” phases after solution treatment at 800°C. The α" and α phases disappear and single β phase is obtained with the addition of Sn element. The strength of the alloys increases and the elongation decreases with increasing Sn content. Meanwhile, it is found the addition of Sn element makes the elastic moduli of the alloys much lower than that of Ti35Nb alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Long,H. J. Rack, Titanium alloys in total joint replacement-a materials science perspective, J. Biomaterials. 19 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[2] K. Wang, The use of titanium for medical application in the USA, J. Mater. Sci. Eng. A. 213 (1996) 134-137.

Google Scholar

[3] R. Huiskes, H. Weinans, B. Riebergen, The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, J. Clin Orthop Relat Res. 274 (1992) 124-134

DOI: 10.1097/00003086-199201000-00014

Google Scholar

[4] Y. F. Zheng, B. L. Wang, J. G. Wang, Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions, J. Mater. Sci. Eng. A. 438 (2006) 891-895.

DOI: 10.1016/j.msea.2006.01.131

Google Scholar

[5] R. Sakaguchi, M. Niinomi, T. Akahori, Relationships between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr system alloys, J. Mater. Sci. Eng. C. 25 (2005) 363-369.

DOI: 10.1016/j.msec.2004.12.014

Google Scholar

[6] T. Ozaki, H. Matsumoto, S. Watanabe, Beta Ti alloys with low Young's modulus, J. Mater. Trans. 45 (2004) 2776-2779.

DOI: 10.2320/matertrans.45.2776

Google Scholar

[7] E. Takahashi, T. Sakurai, S. Watanabe, Effect of heat treatment and Sn content on super elasticity in biocompatible TiNbSn alloys, J. Mater. Trans. 43 (2002) 2978-2983.

DOI: 10.2320/matertrans.43.2978

Google Scholar

[8] T. Wang, P.Q. Dai Z.N. Xiang, Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α+β titanium alloy, J. Mater. Sci. Eng. 26 (2008) 940-945.

Google Scholar

[9] Y.L. Hao, S.J. Li, S.Y. Sun, Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nb-based alloys , J. Mater. Sci. Eng. A. 441 (2006) 112-118.

DOI: 10.1016/j.msea.2006.09.051

Google Scholar

[10] B.L. Wang, Y.F. Zheng, L.C. Zhao, Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys, J. Mater. Sci. Eng. A. 486 (2008) 146-151.

DOI: 10.1016/j.msea.2007.08.073

Google Scholar

[11] X.Y. Zhang, Y.Q. Zhao, C.G. Bai, Titanium Alloys and Its Application, Chemical Industry Press, Beijing, China, 2005.

Google Scholar

[12] A.H. Mohamed, F. Hiroki, H. Keita, Phase stability change with Zr content in β-type Ti–Nb alloys, J. Scripta Mater. 57 (2007) 1000-1003.

DOI: 10.1016/j.scriptamat.2007.08.003

Google Scholar

[13] Y.L. Hao, R. Yang, S.J. Li, Effects of aging treatment on Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr biomedical titanium alloy, Acta Met. Sin. 9 (2002) 126-130.

Google Scholar

[14] D. Kuroda, M. Niinomi, M. Morinaga, Design and mechanical properties of new β type titanium alloys for implant materials, J. Mater. Sci. Eng. A. 243 (1998) 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar