[1]
H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, Heat Mass Transfer 32 (1997) 307-312
DOI: 10.1007/s002310050126
Google Scholar
[2]
H. Ye, X. S. Ge, Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material, Sol. Energ. Mat. Sol. C. 64 (2000) 37-44
DOI: 10.1016/s0927-0248(00)00041-6
Google Scholar
[3]
A. Sari, Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties, Energ. Convers. Manage. 45 (2004) 2033-2042
DOI: 10.1016/j.enconman.2003.10.022
Google Scholar
[4]
A. H. Lee, H. K. Choi, Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage, Polym. Composite. 19 (1998) 704-708
DOI: 10.1002/pc.10143
Google Scholar
[5]
M. Xiao, K. C. Gong, Preparation of a good conductive, shape-stabilized phase change material and its performance study, Acta Energ. Sol. Sinica 22 (2001) 428-431
Google Scholar
[6]
P. H. Qin, R. Yang, Y. P. Zhang, K. P. Lin, Thermal performance of shape-stabilized phase change materials, J. Tsinghua Univ. (Sci & Tech) 43 (2003) 833-835
Google Scholar
[7]
K. P. Lin, Y. P. Zhang, X. Xu, H. F. Di, R. Yang, P. H. Qin, Experimental study of under-floor electric heating system with shape-stabilized PCM plates, Energ. Buildings 37 (2005) 215-220
DOI: 10.1016/j.enbuild.2004.06.017
Google Scholar
[8]
Y. P. Zhang, X. Xu, H. F. Di, K. P. Lin, R. Yang, Experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar buildings, J. Sol. Energ. Eng. 128 (2006) 255-257
DOI: 10.1115/1.2189866
Google Scholar
[9]
Y. P. Zhang, K. P. Lin, R. Yang, H. F. Di, Y. Jiang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings, Energ. Buildings 38 (2006) 1262-1269
DOI: 10.1016/j.enbuild.2006.02.009
Google Scholar
[10]
Y. P. Zhang, J. H. Ding, X. Wang, R. Yang, K. P. Lin, Influence of additives on thermal conductivity of shape-stabilized phase change material, Sol. Energ. Mat. Sol. C. 90 (2006) 1692-1702
DOI: 10.1016/j.solmat.2005.09.007
Google Scholar
[11]
W. L. Cheng, R. M. Zhang, K. Xie, N. Liu, J. Wang, Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties, Sol. Energ. Mat. Sol. C. 94 (2010) 1636-1642
DOI: 10.1016/j.solmat.2010.05.020
Google Scholar
[12]
W. L. Cheng, W. J. Wei, Theoretical analysis of phase change material storage with porosity metal foams, Acta Energ. Sol. Sinica 28 (2007) 729-744
Google Scholar
[13]
S. T. Hong, D. R. Herling, Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites, Adv. Eng. Mat. 9 (2007) 554-557
DOI: 10.1002/adem.200700023
Google Scholar
[14]
D. Zhou, C. Y. Zhao, Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials, Appl. Therm. Eng. 31 (2011) 970-977
DOI: 10.1016/j.applthermaleng.2010.11.022
Google Scholar
[15]
A. Karaipekli, A. Sari, K. Kaygusuz, Thermal Characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage, Energ. Source. Part A 31 (2009) 814-823
DOI: 10.1080/15567030701752768
Google Scholar
[16]
X. F. Zhou, H. N. Xiao, J. Feng, C. R. Zhang, Y. G. Jiang, Paraffin and thermal properties of paraffin/porous silica ceramic composite, Compos. Sci. Tech. 69 (2009) 1246-1249
DOI: 10.1016/j.compscitech.2009.02.030
Google Scholar
[17]
X. Py, R. Olives, S. Mauran, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material, Int. J. Heat Mass Transfer 44 (2001) 2727-2737
DOI: 10.1016/s0017-9310(00)00309-4
Google Scholar
[18]
Mills, M. Farid, J. R. Selman, S. Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl. Therm. Eng. 26 (2006) 1652-1661
DOI: 10.1016/j.applthermaleng.2005.11.022
Google Scholar
[19]
A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng. 27 (2007) 1271-1277
DOI: 10.1016/j.applthermaleng.2006.11.004
Google Scholar
[20]
S. Kim, L. T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energ. Mat. Sol. C. 93 (2009) 136-142
DOI: 10.1016/j.solmat.2008.09.010
Google Scholar
[21]
H. Li, X. Liu, G. Y. Fang, Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials, Appl. Phys. A 100 (2010) 1143-1148
DOI: 10.1007/s00339-010-5724-y
Google Scholar
[22]
Y. J. Zhong, S. Z. Li, X. H. Wei, Z. J. Liu, Q. G. Guo, J. L Shi, L. Liu, Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage, Carbon 48 (2010) 300-304
DOI: 10.1016/j.carbon.2009.09.033
Google Scholar
[23]
L. Xia, P. Zhang, R. Z. Wang, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon 48 (2010) 2538-2548
DOI: 10.1016/j.carbon.2010.03.030
Google Scholar
[24]
J. F. Wang, H. Q. Xie, Z. Xin, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochim. Acta 488 (2009) 39-42
DOI: 10.1016/j.tca.2009.01.022
Google Scholar
[25]
J. F. Wang, H. Q. Xie, Z. Xin, Y. Li, L. F. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energ. 84 (2010) 339-344
DOI: 10.1016/j.solener.2009.12.004
Google Scholar
[26]
R. J. Kedl, T. K. Stovall, Activities in support of the wax-impregnated wallboard concept. U.S. Department of Energy: thermal energy storage researches activity review. New Orleans, Louisiana, USA, (1989)
Google Scholar
[27]
A. M. Khudhair, M. M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energ. Convers. Manage. 45 (2004) 263-275
DOI: 10.1016/s0196-8904(03)00131-6
Google Scholar
[28]
D. Feldman, D. Banu, Obtaining an energy storing building material by direct incorporating of an organic phase change material in gypsum wallboard, Sol. Energ. 22 (1991) 231-242
DOI: 10.1016/0165-1633(91)90021-c
Google Scholar
[29]
A. K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build. Environ. 32 (1997) 405-410
DOI: 10.1016/s0360-1323(97)00009-7
Google Scholar
[30]
J. K. Kissock, J. M. Hannig, T. I. Whitney, M. L. Drake, Testing and simulation of phase change wallboard for thermal storage in buildings, Process. 1998 Int. Sol. Energ. Conf 1998 45-52
Google Scholar
[31]
T. Lee, D. W. Hawes, D. Banu, D. Feldman, Control aspects of latent heat storage and recovery in concrete, Sol. Energ. Mat. Sol. C. 62 (2000) 217-237
DOI: 10.1016/s0927-0248(99)00128-2
Google Scholar
[32]
D. Zhang, J. M. Zhou, K. R. Wu, Z. J. Li, Granulated phase changing composite for energy storage, Acta Mat. Compos. Sinica 21 (2004) 103-109
Google Scholar
[33]
K. Choi, G. Cho, Thermal storage/release and mechanical properties of phase change materials on polyester fabrics, Text. Res. J. 74 (2004) 292-296
DOI: 10.1177/004051750407400402
Google Scholar
[34]
X. Zhang, X. Tao, K. Yick, X. Wang, Structure and thermal stability of microencapsulated phase-change materials, Colloid Polym. Sci. 282 (2004) 330-336
DOI: 10.1007/s00396-003-0925-y
Google Scholar
[35]
X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Crystallization and prevention of supercooling of microencapsulated n-alkanes, J. Colloid Interf. Sci. 281 (2005) 299-306
DOI: 10.1016/j.jcis.2004.08.046
Google Scholar
[36]
J. F. Su, Z. Huang, L. Ren, High compact melamine-formaldehyde micro-PCMs containing n-octadecane fabricated by a two-step coacervation method, Colloid Polym. Sci. 285 (2007) 1581-1591
DOI: 10.1007/s00396-007-1729-2
Google Scholar
[37]
G. Y. Fang, H. Li, F. Yang, X. Liu, S. M. Wu, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage, Chem. Eng. J. 153 (2009) 217-221
DOI: 10.1016/j.cej.2009.06.019
Google Scholar
[38]
Y. Wang, T. D. Xia, H. X. Feng, H. Zhang, Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent thermal energy storage, Renew. Energ. 36 (2011) 1814-1820
DOI: 10.1016/j.renene.2010.12.022
Google Scholar
[39]
M. N. A. Hawlaer, M. S. Uddin, M. M. Khin, Microencapsulated PCM thermal-energy storage system, Appl. Energ. 74 (2003) 195-202
DOI: 10.1016/s0306-2619(02)00146-0
Google Scholar
[40]
A. Loxley, B. Vincent, Preparation of poly(methyl methacrylate) microcapsules with liquid cores, J. Colloid Interf. Sci. 208 (1998) 49-62
DOI: 10.1006/jcis.1998.5698
Google Scholar
[41]
R. Yang, H. Xu, Y. P. Zhang, Preparation, Physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion, Sol. Energ. Mat. Sol. C. 80 (2003) 405-416
DOI: 10.1016/j.solmat.2003.08.005
Google Scholar
[42]
R. Yang, Y. Zhang, X. Wang, Y. P. Zhang, Q. W. Zhang, Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method, Sol. Energ. Mat. Sol. C. 93 (2009) 1817-1822
DOI: 10.1016/j.solmat.2009.06.019
Google Scholar
[43]
Information on http://www.basf.com/group/corporate/en/brand/MICRONAL_PCM
Google Scholar