Encapsulated Phase Change Materials and their Applications in Buildings

Article Preview

Abstract:

Energy consumption of buildings has exceeded 25% of total social energy consumption and new techniques and new materials are greatly demanded in buildings in order to save the energy. As an important clean renewable energy resource, solar energy is expected to be used in buildings instead of traditional energy including petroleum and coal. Phase change material (PCM) can absorb solar energy, transfer it to heat, and store it through phase change process. When needed, the energy absorbed can be released. By this way, the room temperature in a building can be maintained in a comfortable region without input of extra energy. Therefore, PCM is a promising material for energy saving and will be widely used in various applications as well as buildings. In this paper, three kinds of encapsulated phase change materials, i.e., shape-stabilized PCM (FSPCM), absorbed PCM and PCM microcapsule are introduced. Their preparation methods and physical properties as well as typical applications are compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-89

Citation:

Online since:

April 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, Heat Mass Transfer 32 (1997) 307-312

DOI: 10.1007/s002310050126

Google Scholar

[2] H. Ye, X. S. Ge, Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material, Sol. Energ. Mat. Sol. C. 64 (2000) 37-44

DOI: 10.1016/s0927-0248(00)00041-6

Google Scholar

[3] A. Sari, Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties, Energ. Convers. Manage. 45 (2004) 2033-2042

DOI: 10.1016/j.enconman.2003.10.022

Google Scholar

[4] A. H. Lee, H. K. Choi, Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage, Polym. Composite. 19 (1998) 704-708

DOI: 10.1002/pc.10143

Google Scholar

[5] M. Xiao, K. C. Gong, Preparation of a good conductive, shape-stabilized phase change material and its performance study, Acta Energ. Sol. Sinica 22 (2001) 428-431

Google Scholar

[6] P. H. Qin, R. Yang, Y. P. Zhang, K. P. Lin, Thermal performance of shape-stabilized phase change materials, J. Tsinghua Univ. (Sci & Tech) 43 (2003) 833-835

Google Scholar

[7] K. P. Lin, Y. P. Zhang, X. Xu, H. F. Di, R. Yang, P. H. Qin, Experimental study of under-floor electric heating system with shape-stabilized PCM plates, Energ. Buildings 37 (2005) 215-220

DOI: 10.1016/j.enbuild.2004.06.017

Google Scholar

[8] Y. P. Zhang, X. Xu, H. F. Di, K. P. Lin, R. Yang, Experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar buildings, J. Sol. Energ. Eng. 128 (2006) 255-257

DOI: 10.1115/1.2189866

Google Scholar

[9] Y. P. Zhang, K. P. Lin, R. Yang, H. F. Di, Y. Jiang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings, Energ. Buildings 38 (2006) 1262-1269

DOI: 10.1016/j.enbuild.2006.02.009

Google Scholar

[10] Y. P. Zhang, J. H. Ding, X. Wang, R. Yang, K. P. Lin, Influence of additives on thermal conductivity of shape-stabilized phase change material, Sol. Energ. Mat. Sol. C. 90 (2006) 1692-1702

DOI: 10.1016/j.solmat.2005.09.007

Google Scholar

[11] W. L. Cheng, R. M. Zhang, K. Xie, N. Liu, J. Wang, Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties, Sol. Energ. Mat. Sol. C. 94 (2010) 1636-1642

DOI: 10.1016/j.solmat.2010.05.020

Google Scholar

[12] W. L. Cheng, W. J. Wei, Theoretical analysis of phase change material storage with porosity metal foams, Acta Energ. Sol. Sinica 28 (2007) 729-744

Google Scholar

[13] S. T. Hong, D. R. Herling, Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites, Adv. Eng. Mat. 9 (2007) 554-557

DOI: 10.1002/adem.200700023

Google Scholar

[14] D. Zhou, C. Y. Zhao, Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials, Appl. Therm. Eng. 31 (2011) 970-977

DOI: 10.1016/j.applthermaleng.2010.11.022

Google Scholar

[15] A. Karaipekli, A. Sari, K. Kaygusuz, Thermal Characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage, Energ. Source. Part A 31 (2009) 814-823

DOI: 10.1080/15567030701752768

Google Scholar

[16] X. F. Zhou, H. N. Xiao, J. Feng, C. R. Zhang, Y. G. Jiang, Paraffin and thermal properties of paraffin/porous silica ceramic composite, Compos. Sci. Tech. 69 (2009) 1246-1249

DOI: 10.1016/j.compscitech.2009.02.030

Google Scholar

[17] X. Py, R. Olives, S. Mauran, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material, Int. J. Heat Mass Transfer 44 (2001) 2727-2737

DOI: 10.1016/s0017-9310(00)00309-4

Google Scholar

[18] Mills, M. Farid, J. R. Selman, S. Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl. Therm. Eng. 26 (2006) 1652-1661

DOI: 10.1016/j.applthermaleng.2005.11.022

Google Scholar

[19] A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng. 27 (2007) 1271-1277

DOI: 10.1016/j.applthermaleng.2006.11.004

Google Scholar

[20] S. Kim, L. T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energ. Mat. Sol. C. 93 (2009) 136-142

DOI: 10.1016/j.solmat.2008.09.010

Google Scholar

[21] H. Li, X. Liu, G. Y. Fang, Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials, Appl. Phys. A 100 (2010) 1143-1148

DOI: 10.1007/s00339-010-5724-y

Google Scholar

[22] Y. J. Zhong, S. Z. Li, X. H. Wei, Z. J. Liu, Q. G. Guo, J. L Shi, L. Liu, Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage, Carbon 48 (2010) 300-304

DOI: 10.1016/j.carbon.2009.09.033

Google Scholar

[23] L. Xia, P. Zhang, R. Z. Wang, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon 48 (2010) 2538-2548

DOI: 10.1016/j.carbon.2010.03.030

Google Scholar

[24] J. F. Wang, H. Q. Xie, Z. Xin, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochim. Acta 488 (2009) 39-42

DOI: 10.1016/j.tca.2009.01.022

Google Scholar

[25] J. F. Wang, H. Q. Xie, Z. Xin, Y. Li, L. F. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energ. 84 (2010) 339-344

DOI: 10.1016/j.solener.2009.12.004

Google Scholar

[26] R. J. Kedl, T. K. Stovall, Activities in support of the wax-impregnated wallboard concept. U.S. Department of Energy: thermal energy storage researches activity review. New Orleans, Louisiana, USA, (1989)

Google Scholar

[27] A. M. Khudhair, M. M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energ. Convers. Manage. 45 (2004) 263-275

DOI: 10.1016/s0196-8904(03)00131-6

Google Scholar

[28] D. Feldman, D. Banu, Obtaining an energy storing building material by direct incorporating of an organic phase change material in gypsum wallboard, Sol. Energ. 22 (1991) 231-242

DOI: 10.1016/0165-1633(91)90021-c

Google Scholar

[29] A. K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build. Environ. 32 (1997) 405-410

DOI: 10.1016/s0360-1323(97)00009-7

Google Scholar

[30] J. K. Kissock, J. M. Hannig, T. I. Whitney, M. L. Drake, Testing and simulation of phase change wallboard for thermal storage in buildings, Process. 1998 Int. Sol. Energ. Conf 1998 45-52

Google Scholar

[31] T. Lee, D. W. Hawes, D. Banu, D. Feldman, Control aspects of latent heat storage and recovery in concrete, Sol. Energ. Mat. Sol. C. 62 (2000) 217-237

DOI: 10.1016/s0927-0248(99)00128-2

Google Scholar

[32] D. Zhang, J. M. Zhou, K. R. Wu, Z. J. Li, Granulated phase changing composite for energy storage, Acta Mat. Compos. Sinica 21 (2004) 103-109

Google Scholar

[33] K. Choi, G. Cho, Thermal storage/release and mechanical properties of phase change materials on polyester fabrics, Text. Res. J. 74 (2004) 292-296

DOI: 10.1177/004051750407400402

Google Scholar

[34] X. Zhang, X. Tao, K. Yick, X. Wang, Structure and thermal stability of microencapsulated phase-change materials, Colloid Polym. Sci. 282 (2004) 330-336

DOI: 10.1007/s00396-003-0925-y

Google Scholar

[35] X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Crystallization and prevention of supercooling of microencapsulated n-alkanes, J. Colloid Interf. Sci. 281 (2005) 299-306

DOI: 10.1016/j.jcis.2004.08.046

Google Scholar

[36] J. F. Su, Z. Huang, L. Ren, High compact melamine-formaldehyde micro-PCMs containing n-octadecane fabricated by a two-step coacervation method, Colloid Polym. Sci. 285 (2007) 1581-1591

DOI: 10.1007/s00396-007-1729-2

Google Scholar

[37] G. Y. Fang, H. Li, F. Yang, X. Liu, S. M. Wu, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage, Chem. Eng. J. 153 (2009) 217-221

DOI: 10.1016/j.cej.2009.06.019

Google Scholar

[38] Y. Wang, T. D. Xia, H. X. Feng, H. Zhang, Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent thermal energy storage, Renew. Energ. 36 (2011) 1814-1820

DOI: 10.1016/j.renene.2010.12.022

Google Scholar

[39] M. N. A. Hawlaer, M. S. Uddin, M. M. Khin, Microencapsulated PCM thermal-energy storage system, Appl. Energ. 74 (2003) 195-202

DOI: 10.1016/s0306-2619(02)00146-0

Google Scholar

[40] A. Loxley, B. Vincent, Preparation of poly(methyl methacrylate) microcapsules with liquid cores, J. Colloid Interf. Sci. 208 (1998) 49-62

DOI: 10.1006/jcis.1998.5698

Google Scholar

[41] R. Yang, H. Xu, Y. P. Zhang, Preparation, Physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion, Sol. Energ. Mat. Sol. C. 80 (2003) 405-416

DOI: 10.1016/j.solmat.2003.08.005

Google Scholar

[42] R. Yang, Y. Zhang, X. Wang, Y. P. Zhang, Q. W. Zhang, Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method, Sol. Energ. Mat. Sol. C. 93 (2009) 1817-1822

DOI: 10.1016/j.solmat.2009.06.019

Google Scholar

[43] Information on http://www.basf.com/group/corporate/en/brand/MICRONAL_PCM

Google Scholar