Hydrothermal Preparation and Photocatalytic Activity of Different Morphology Titania

Article Preview

Abstract:

TiO2 samples with various shapes like flake, nanofiber and large grain were synthesized by template-free hydrothermal method with rutile TiO2 or tetrabutyl titanate (Ti (OC4H9)4, TBOT) as precursor. Photocatalytic degradation performances were investigated by using methyl orange (MO) as modeling pollutant. The results shown that pure mesoporous anatase TiO2-Grain showed the highest photocatalytic activity (3.7 times higher than P25), which is due to a combinative effect of anatase phase and high specific surface areas. The bi-phase flaky TiO2 also have higher activity than P25. While, nanofiber with TiO2(B) phase has the lowest photocatalytic activity. The large sized TiO2 grain can be separated and recycled easily after reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

569-574

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. W. Jing, Y. J. Zhang, L. J. Guo: Chem. Phys. Lett. Vol. 415(2005), p.74.

Google Scholar

[2] X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng: J. Am. Chem. Soc. Vol. 131(2009), p.3152.

Google Scholar

[3] T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito: J. Colloid Interface Sci. Vol. 281(2005), p.510.

Google Scholar

[4] X. X. Fan, X. Y. Chen, S. P. Zhu, Z. S. Li, Z. G. : J. Mol. Catal. A. Vol. 284(2008), p.155.

Google Scholar

[5] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, Q. J. Zhang: J. Photochem. Photobiol. Vol. 182(2006), p.121.

Google Scholar

[6] H. Y. Zhu, J. A. Orthman, J. Y. Li, J. C. Zhao, G. J. Churchman, and E. F. Vansant: Chem. Mater. Vol. 14(2002), p.5037.

Google Scholar

[7] G. Dawson, W. Chen, T. K. Zhang, Z. Chen, X. R. Cheng: Solid-State Sci. Vol. 12(2010), p.2170.

Google Scholar

[8] N. H. Lee, H. J. Oh, C. R. Yoon, C. R. Yoon, Y. P. Guo, K. S. Park, B. W. Kim, S. J. Kim: J. Nanosci. Nanotech. Vol. 8(2008), p.5158.

Google Scholar

[9] Y. Q. Wang, S. G. Chen, X. H. Tang, A. Zaban, A. Gedanken: J. Mater. Chem. Vol. 11( 2001), p.521.

Google Scholar

[10] T. Y. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao: J. Phys. Chem. B Vol. 109( 2005), p.4947.

Google Scholar

[11] N. Z. Bao, X. Feng, Z. H. Yang, L. M. Shen, X. H. Lu: Environ. Sci. Technol. Vol. 38(2004), p.2729.

Google Scholar

[12] B. Cecilia, C. Giuseppe, V. D. Maria, S. Elena: J. Photochem. Photobiol. A Vol. 211( 2010), p.185.

Google Scholar

[13] B. M. Wen, C. Y. Liu, Y. Liu: J. Photochem. Photobiol. A Vol. 173(2005), p.7.

Google Scholar

[14] A. Furube, T. Asahi, H. Masuhara, H. Yamashita, and M. Anpo: J. Phys. Chem. B Vol. (1999)103, p.3120.

Google Scholar

[15] B. Ohtani, Y. Ogawa, S. Nishimoto: J. Phys. Chem. Vol. 101(1997), p.3746.

Google Scholar

[16] W. Li, Y. Bai, C. Liu, Z. H. Yang, X. Feng, X. H. Lu, K. Y. Chan: Environ. Sci. Technol. Vol. 43(2009), p.5423.

Google Scholar