Studies on Mechanical Properties and Structure of LLDPE/Nano-Montmorillonite Composites

Article Preview

Abstract:

Linear low-density polyethylene (LLDPE)/nano-montmorillonite (nano-MMT) composites were prepared by melting method. Mechanical test, scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and small angle light scattering (SALS) measurements were used to characterize the mechanical properties and structure of the LLDPE composite. The results indicated that the impact strength of LLDPE decreased with the increase of nano-MMT content. However, the tensile strength firstly increased and then decreased. The aggregation of nano-MMT in LLDPE happened at larger content. The spherulite size and crystallinity of LLDPE reduced with the addition of nano-MMT. Furthermore, it was found that the structure of the spherulite was destroyed by the nano-MMT. The microcrystal size of LLDPE also decreased with the increase of nano-MMT content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-584

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Vandermiers,J. F. Moulin,P. Damman and M. Dosie`re: Polymer Vol. 41 (2000), p.2915.

Google Scholar

[2] J. F. Li,M. R. Kamal: Polym. Eng. Sci. Vol. 45 ( 2005), p.1140.

Google Scholar

[3] R. Alamo,E. K. M. Chan and L. Mandelkern: Macromolecules Vol. 25 (1992), p.6381.

Google Scholar

[4] M. D. Kate,A. S. Robert and C. Ferenc: J. Appl. Polym. Sci. Vol. 83 (2002), p.777.

Google Scholar

[5] K. M. Drummond,J. L. Hopewell and R. A. Shanks: J. Appl. Polym. Sci. Vol. 78 (2000), p.1009.

Google Scholar

[6] T. X. Hong,J. X. Gao and Z. D. Cheng: J. Funct. Polym. Vol. 13(2000), p.447.

Google Scholar

[7] Y. Q. Zhang,Y. Q. Hua: Acta Polym. Sinica Vol. 5 (2003), p.683.

Google Scholar

[8] S. H. Ryu,Y. W. Chang: Polym. Bull. Vol. 55(2005), p.385.

Google Scholar

[9] L. Qiu,W. Chen and B. Qu: Polymer Vol. 47 (2006), p.922.

Google Scholar

[10] E. Kontou,M. Niaounakis: Polymer Vol. 47 (2006), p.1267.

Google Scholar

[11] A. Ahmad,D. H. J. Mohd and I. Abdullah: J. Mater. Sci. Vol. 39 (2004), p.1459.

Google Scholar

[12] A. S. Luyt,J. A. Molefi and H. Krump: Polym. Degrad. Stab. Vol. 91(2006), p.1629.

Google Scholar

[13] S. Hotta,D. R. Paul: Polymer Vol. 45 (2004), p.7639.

Google Scholar

[14] T. Siddaramaiah,K. S. Jeevananda,H. Jagadeesh and R. Somashekarappa: J. Appl. Polym. Sci. Vol. 90 (2003), p.2938.

Google Scholar

[15] P. Maiti,P. H. Nam and M. Okamoto: Macromolecules Vol. 35(2002), p. (2042).

Google Scholar

[16] P. H. Nama,P. Maitia and M. Okamoto: Polymer Vol. 42 (2001), p.9633.

Google Scholar

[17] K. H. Wang,M. H. Choi and I. J. Chung: Polymer Vol. 42 (2001), p.9819.

Google Scholar

[18] C. M. Koo,H. T. Ham and I. J. Chung, Macromolecules Vol. 35(2002), p.5116.

Google Scholar

[19] R. W. Truss,T. K. Yeow: J. Appl. Polym. Sci. Vol. 100 (2006), p.3044.

Google Scholar

[20] A. Ranade,N. A. D'Souza and K. Nayak: Annual Technical Conference Vol. 3 (2003), p.3162.

Google Scholar

[21] R. S. Stein: The Method of Scattering and Birefringence Applied in Research of Texture of Polymer (Science Publishing, Beijing 1983).

Google Scholar

[22] Y. X. Liu,G. X. Li,Q. Yang,Y. L. Feng and Y. M. Mao: Plast. Rubber Compos. Vol. 36 (2007), p.332.

Google Scholar

[23] Y. S. Thio,A. S. Argon: Polymer Vol. 43 (2002), p.3661.

Google Scholar

[24] W. C. Zuiderduin,C. Westzaan: Polymer Vol. 44 (2003), p.261.

Google Scholar

[25] F. F. Lange: J. Mater. Sci. Vol. 6 (1979), p.1197.

Google Scholar

[26] N. W. Brooks,M. Ghazali and R. A. Duckett: Polymer Vol. 40(1999), p.821.

Google Scholar

[27] M. D. Failla,L. Mandilkern: Macromolecules Vol. 26(1993), p.7167.

Google Scholar

[28] J. H. Yin: Modern Plymer Physics (Science Publishing, Beijing 2001).

Google Scholar