Polymer Micro Hot Embossing with Bulk Metallic Glass Mold Insert

Article Preview

Abstract:

Polymer microstructures are used more and more in many fields. Hot embossing is one of molding processing to achieve micro polymer components. In this paper, bulk metallic glass was selected as mold material to fabricate mold insert of micro hot embossing. Traditional UV-lithography and ICP-etching were used to achieve micro features on silicon wafer. And then, micro features were transferred from silicon wafer to bulk metallic glass mold insert above its glass transition temperature. Finally, applied bulk metallic glass mold insert to replicate polymer microstructure with hot embossing. Three commonly used thermoplastic polymers: high-density polyethylene (HDPE), polypropylene (PP) and polycarbonate (PC) were selected in this study. Experiments show that microstructures can have a good replication from bulk metallic glass mold insert to the thermoplastic polymer using hot embossing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

639-644

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Worgull: Hot Embossing - Theory and Technology of Microreplication (Elsevier 2009).

Google Scholar

[2] W. Wang and S.A. Soper: BioMEMS: technologies and applications (CRC Press, Boca Raton 2007).

Google Scholar

[3] R. Kuduva-Raman-Thanumoorthy and D. Yao: Polym. Eng. Sci. Vol. 49(2009), p.1894.

DOI: 10.1002/pen.21422

Google Scholar

[4] M. Miller and P. Liaw: Bulk Metallic Glasses - An Overview (Springer, New York 2008).

Google Scholar

[5] F.F. Wu, Z.F. Zhang, S.X. Mao and J. Eckert: Philos. Mag. Lett. Vol. 89(2009), p.178.

Google Scholar

[6] J. Schroers: Adv. Mater. Vol. 22(2010), p.1566.

Google Scholar

[7] G. Kumar, A. Desai and J. Schroers: Adv. Mater. Vol. 23(2011), p.461.

Google Scholar

[8] J. Schroers, Q. Pham and A. Desai: J. Microelectromech. Syst. Vol. 16(2007), p.240.

Google Scholar

[9] Y. Saotome, K. Itoh, T. Zhang, and A. Inoue: Scripta Mater. Vol. 44(2001), p.1541.

Google Scholar

[10] D. L. Henann, V. Srivastava, H. K. Taylor, M. R. Hale, D. E. Hardt and L. Anand: J. Micromech. Microeng. Vol. 19 (2009), p.115030.

DOI: 10.1088/0960-1317/19/11/115030

Google Scholar

[11] D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu and T. Shi: J. Alloys Compd. Vol. 484(2009), p.118.

Google Scholar

[12] Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang and A. Inoue: Intermetallics Vol. 10(2002), p.1241.

Google Scholar

[13] M. Ishida, H. Takeda, D. Watanabe, K. Amiya, N. Nishiyama, K. Kita, Y. Saotome and A. Inoue: Mater. Trans., JIM Vol. 45(2004), p.1239.

DOI: 10.2320/matertrans.45.1239

Google Scholar

[14] Y. Kawamura and A. Inoue: Appl. Phys. Lett. Vol. 77(2000), p.1114.

Google Scholar

[15] J. Schroers: JOM Vol. 57(2005), p.35.

Google Scholar

[16] Jason S.C. Jang, C.F. Chang, Y.C. Huang, J.C. Huang, W.J. Chiang and C.T. Liu: Intermetallics Vol. 17(2009), p.200.

Google Scholar