Recent Progress in Hydrogen Storage Characteristics of Ti-Based Icosahedral Quasicrystal Alloys

Article Preview

Abstract:

cosahedral quasicrystalline phase (I-phase) formed in a number of Ti-based alloys, and the I-phase is well ordered and thermodynamically stable in the alloys. Because Ti-based icosahedral (i) quasicrystal phases, which have a new type of translational long-range order and display noncrystallographic rotational symmetry, are believed to possess a large number of tetrahedral interstitial sites in their quasilattices. Ti-based I-phase alloy was considered as one of the most promising hydrogen storage materials due to thermodynamical stability, suitable chemistry affinity and low cost. Recent year, the Ti-based I-phase alloys containing crystal or amorphous phases were prepared, and microstructure and hydrogen storage characteristics were investigated. Ti-based I-phase alloy becomes one of the most promising hydrogen storage materials due to thermodynamical stability, low cost and high hydrogen capacity, and exhibited good electrochemical hydrogen storage capacity and cycle life property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

781-785

Citation:

Online since:

April 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.V. Divinski, Scr. Mater. 34 (1996) 1351–1355.

Google Scholar

[2] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53 (1984) 1951–(1953).

DOI: 10.1103/physrevlett.53.1951

Google Scholar

[3] J. -M. Dubois, Mater. Sci. Eng. A 294–296 (2000) 4–9.

Google Scholar

[4] A. Singh, M. Nakamura, M. Watanabe, A. Kato, A.P. Tsai, Scr. Mater. 49 (2003) 417–422.

Google Scholar

[5] S. Yi, K.B. Kim, W.T. Kim, D.H. Kim, Scr. Mater. 44 (2001) 1757–1760.

Google Scholar

[6] A. Inoue, T. Zhang, S. Ishihara, J. Saida, M. Matsushita, Scr. Mater. 44 (2001) 1615–1619.

Google Scholar

[7] A.M. Viano, R.M. Stroud, P.C. Gibbons, A. McDowell, M.S. Conradi, K.F. Kelton, Phys. Rev. B: Rapid Commun. 51 (1995) 12026-12029.

DOI: 10.1103/physrevb.51.12026

Google Scholar

[8] K.F. Kelton, W.J. Kim, R.M. Stroud, Appl. Phys. Lett. 70 (1997) 3230-3232.

Google Scholar

[9] K.F. Kelton, Mater. Sci. Eng. A 375 (2004) 31-35.

Google Scholar

[10] A. Takasaki, K.F. Kelton, J. Alloys Compd. 347 (2002) 295-299.

Google Scholar

[11] Takasaki A, Han CH, Furuya Y, Kelton KF. Philo Mag Lett. 82 (2002) 353–361.

Google Scholar

[12] Liu B, Wu YM, Wang L. J Power Sources. 159 (2006) 1458–1463.

Google Scholar

[13] Liu B, Wang JL, Wu YM, Wang L. Electrochimica Acta. 51 (2006) 3586–3591.

Google Scholar

[14] E.H. Majzoub, J.Y. Kim, R.G. Hennig, K.F. Kelton, P.C. Gibbons, W.B. Yelon, Mater. Sci. Eng. A 294–296 (2000) 108-112.

Google Scholar

[15] Stroud RM, Viano AM, Gibbons PC, Kelton KF. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage. Appl Phys Lett. 69 (1996) 2998–3000.

DOI: 10.1063/1.117756

Google Scholar

[16] Huang H, Dong P, Yin C, Zhang P, Bai B, Dong C. Characterization and hydrogen absorption at low temperature of suction-cast Ti45Zr38Ni17 quasicrystalline alloy. Int J Hydrogen Energy. 33 (2008) 722–727.

DOI: 10.1016/j.ijhydene.2007.10.028

Google Scholar

[17] Liu B, Wu Y, Wang L. Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders. J Power Sources. 159 (2006)1458–1463.

DOI: 10.1016/j.jpowsour.2005.11.077

Google Scholar

[18] Liu B, Wu Y, Wang L. Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powder. Int J Hydrogen Energy. 31 (2006) 1394–1340.

DOI: 10.1016/j.ijhydene.2005.11.001

Google Scholar

[199] Liu B, Liu D, Wu Y, Li L, Wang L. Hydrogen absorption in Ti45Zr35Ni17Cu3 amorphous and quasicrystalline alloy powders. Int J Hydrogen Energy. 32 (2007) 2429–2433.

DOI: 10.1016/j.ijhydene.2006.11.007

Google Scholar

[20] Wang L, Li C, Ma L, Inoue A. Microstructure and crystallization of melt-spun Ti–Ni–Zr–Y Alloys. J Alloys Compd. 339(2005) 216–220.

DOI: 10.1016/s0925-8388(01)02000-x

Google Scholar

[21] Qiao Y, Zhao M, Zhu X, Cao G. Microstructure and some dynamic performances of Ti0. 17Zr0. 08V0. 34RE0. 01Cr0. 1Ni0. 3 (RE= Ce, Dy) hydrogen storageelectrode alloys. Int J Hydrogen Energy 32 (2007) 3427–3234.

DOI: 10.1016/j.ijhydene.2007.03.010

Google Scholar

[22] Tskasaki A., Kelton KF. Int J Hydrogen Energy. 31 (2006) 183–190.

Google Scholar

[23] Liu B, Wu YM, Wang L. J Power Sources. 162 (2006) 713-718.

Google Scholar

[24] Liu B, Wu YM, Wang L. J Alloys Compd. 425 (2006) 296-301.

Google Scholar

[25] Liu B, Wu YM, Wang L. Electrochimica Acta. 52 (2007) 3550-3555.

Google Scholar

[26] Hu W, Wang JL, Wang LD, Wu YM, Wang L. Electrochimica Acta. 54 (2009) 2770–2773.

Google Scholar