[1]
S.V. Divinski, Scr. Mater. 34 (1996) 1351–1355.
Google Scholar
[2]
D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53 (1984) 1951–(1953).
DOI: 10.1103/physrevlett.53.1951
Google Scholar
[3]
J. -M. Dubois, Mater. Sci. Eng. A 294–296 (2000) 4–9.
Google Scholar
[4]
A. Singh, M. Nakamura, M. Watanabe, A. Kato, A.P. Tsai, Scr. Mater. 49 (2003) 417–422.
Google Scholar
[5]
S. Yi, K.B. Kim, W.T. Kim, D.H. Kim, Scr. Mater. 44 (2001) 1757–1760.
Google Scholar
[6]
A. Inoue, T. Zhang, S. Ishihara, J. Saida, M. Matsushita, Scr. Mater. 44 (2001) 1615–1619.
Google Scholar
[7]
A.M. Viano, R.M. Stroud, P.C. Gibbons, A. McDowell, M.S. Conradi, K.F. Kelton, Phys. Rev. B: Rapid Commun. 51 (1995) 12026-12029.
DOI: 10.1103/physrevb.51.12026
Google Scholar
[8]
K.F. Kelton, W.J. Kim, R.M. Stroud, Appl. Phys. Lett. 70 (1997) 3230-3232.
Google Scholar
[9]
K.F. Kelton, Mater. Sci. Eng. A 375 (2004) 31-35.
Google Scholar
[10]
A. Takasaki, K.F. Kelton, J. Alloys Compd. 347 (2002) 295-299.
Google Scholar
[11]
Takasaki A, Han CH, Furuya Y, Kelton KF. Philo Mag Lett. 82 (2002) 353–361.
Google Scholar
[12]
Liu B, Wu YM, Wang L. J Power Sources. 159 (2006) 1458–1463.
Google Scholar
[13]
Liu B, Wang JL, Wu YM, Wang L. Electrochimica Acta. 51 (2006) 3586–3591.
Google Scholar
[14]
E.H. Majzoub, J.Y. Kim, R.G. Hennig, K.F. Kelton, P.C. Gibbons, W.B. Yelon, Mater. Sci. Eng. A 294–296 (2000) 108-112.
Google Scholar
[15]
Stroud RM, Viano AM, Gibbons PC, Kelton KF. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage. Appl Phys Lett. 69 (1996) 2998–3000.
DOI: 10.1063/1.117756
Google Scholar
[16]
Huang H, Dong P, Yin C, Zhang P, Bai B, Dong C. Characterization and hydrogen absorption at low temperature of suction-cast Ti45Zr38Ni17 quasicrystalline alloy. Int J Hydrogen Energy. 33 (2008) 722–727.
DOI: 10.1016/j.ijhydene.2007.10.028
Google Scholar
[17]
Liu B, Wu Y, Wang L. Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders. J Power Sources. 159 (2006)1458–1463.
DOI: 10.1016/j.jpowsour.2005.11.077
Google Scholar
[18]
Liu B, Wu Y, Wang L. Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powder. Int J Hydrogen Energy. 31 (2006) 1394–1340.
DOI: 10.1016/j.ijhydene.2005.11.001
Google Scholar
[199]
Liu B, Liu D, Wu Y, Li L, Wang L. Hydrogen absorption in Ti45Zr35Ni17Cu3 amorphous and quasicrystalline alloy powders. Int J Hydrogen Energy. 32 (2007) 2429–2433.
DOI: 10.1016/j.ijhydene.2006.11.007
Google Scholar
[20]
Wang L, Li C, Ma L, Inoue A. Microstructure and crystallization of melt-spun Ti–Ni–Zr–Y Alloys. J Alloys Compd. 339(2005) 216–220.
DOI: 10.1016/s0925-8388(01)02000-x
Google Scholar
[21]
Qiao Y, Zhao M, Zhu X, Cao G. Microstructure and some dynamic performances of Ti0. 17Zr0. 08V0. 34RE0. 01Cr0. 1Ni0. 3 (RE= Ce, Dy) hydrogen storageelectrode alloys. Int J Hydrogen Energy 32 (2007) 3427–3234.
DOI: 10.1016/j.ijhydene.2007.03.010
Google Scholar
[22]
Tskasaki A., Kelton KF. Int J Hydrogen Energy. 31 (2006) 183–190.
Google Scholar
[23]
Liu B, Wu YM, Wang L. J Power Sources. 162 (2006) 713-718.
Google Scholar
[24]
Liu B, Wu YM, Wang L. J Alloys Compd. 425 (2006) 296-301.
Google Scholar
[25]
Liu B, Wu YM, Wang L. Electrochimica Acta. 52 (2007) 3550-3555.
Google Scholar
[26]
Hu W, Wang JL, Wang LD, Wu YM, Wang L. Electrochimica Acta. 54 (2009) 2770–2773.
Google Scholar