Nickle Oxide Based Bulk Heterojunction Flexible Solar Cells

Article Preview

Abstract:

This paper presents an efficient flexible organic solar cell with room temperarure sputtered and highly conductive nickle oxide (NiO) thin film as hole transporting layer. The strcture of this kind of devices is PET/ITO/NiO/P3HT: PCBM [regioregular of poly (3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester] /Al. On the study of characteristics of Nickle oxide thin film, such as sputtering temperature, thickness, and oxygen proportion, we found that NiO with 10 nm and sputtered at room temperature shows the best photovoltaic properties. The highest power conversion efficiency (PCE) of 3.26% and 2.5% were achieved on glass substrate and flexible substrate individually. The device photovoltaic properties were discussed in terms of the band diagrams and series resistance of the devices. Also the properties of nickle oxide thin film on different conditions were investigated too.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

109-112

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger: Science Vol. 317 (2007), pp.222-225

Google Scholar

[2] R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec: Appl. Phys. Lett. Vol. 92 (2008), p.093303

Google Scholar

[3] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Malley, and K. Y. Jen: Appl. Phys. Lett. Vol. 92 (2008), p.253301

Google Scholar

[4] J. Halme, J. Saarinen, and P. Lund: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), pp.887-899

Google Scholar

[5] X. Fan, F. Z. Wang, Z. Z. Chu, L. Chen, C. Zhang, and D. C. Zou: Appl. Phys. Lett. Vol. 90 (2007), p.073501

Google Scholar

[6] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks: Proc. Natl. Acad. Sci. U.S.A. Vol. 105 (2008), pp.2783-2787

Google Scholar

[7] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong: Appl. Phys. Lett. Vol. 93 (2008), p.083305

Google Scholar

[8] L. Ai, G.J. Fang, L.Y. Yuan, and X.Z. Zhao: Appl. Surf. Sci. Vol.254(2008), pp.2401-2405

Google Scholar

[9] W.L. Jang, Y.M. Lu, W.S. Hwang, T.L. Hsiung and H.P. Wang: Appl. Phys. Lett. Vol.94 (2009), p.062103

Google Scholar

[10] Y.H. Zhou, F.L. Zhang, K. Tvingstedt, W.J. Tian, and O.Inganäs1: Appl. Phys. Lett. Vol. 93 (2008), p.033302

Google Scholar

[11] S. Sensfuss, A. Konkin, H.-K. Roth, M. Al-Ibrahim, U. Zhokhavets, G. Gobsch, V. I. Krinichnyi, G. A. Nazmutdinova, and E. Klemm: Synth. Met. Vol. 137 (2003), pp.1433-1434

DOI: 10.1016/s0379-6779(02)01167-0

Google Scholar

[12] G. Dennler, S. Bereznev, D. Fichou, K. Holl, D. Ilic, R. Koeppe, and S. Taillemite: Sol. Energy Vol. 81 (2007), pp.947-957

DOI: 10.1016/j.solener.2007.02.008

Google Scholar