Light Trapping Potential of Hexagonal Array Silicon Nanohole Structure for Solar Cell Application

Article Preview

Abstract:

The reflectance of the hexagonal array silicon nanohole structure was systematically studied using various measurements and through simulations. It was found that the hexagonal array silicon nanohole can reduce the reflectance along the entire spectrum range by approximately 6%. It is suggested that the enhancement of the electric field intensity at short wavelength is mainly due to the large surface area provided by the nanohole structure, while multiple reflections occurring in the nanohole contribute to electric field enhancement in the long wavelength range. In addition, the simulation of a hexagonal array silicon nanohole coated with a thin layer of indium tin oxide (ITO) was carried out. The results show that reflectance is greatly decreased along nearly the entire spectrum range, except from 400 nm to 440 nm, and almost zero reflectance is achieved at wavelengths from 650 nm to 750 nm. The results provide a practical guideline to the design and fabrication of a low-reflectance, and as a consequence, a high-efficiency hexagonal array silicon nanohole solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

90-96

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Mark Jr.: Solar Energy Materials and Solar Cells Vol. 65 (2001), pp.363-368

Google Scholar

[2] Z. Erjing, Z. Weijia, L. Jun, Y. Dongjie, H.J. Jacques and Z. Jing: Vacuum Vol. 86 (2011), pp.290-294

DOI: 10.1016/j.vacuum.2011.06.019

Google Scholar

[3] H.G. Teo, P.S. Lee and M.N.A. Hawlader: Applied Energy Vol. 90 (2012), pp.309-315

Google Scholar

[4] M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch and V. Wittwer: Thin Solid Films Vol. 451-452 (2004), pp.619-623

DOI: 10.1016/j.tsf.2003.11.028

Google Scholar

[5] S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee and D.-Y. Kim: Applied Physics Letters Vol. 91 (2007), pp.173509-3

Google Scholar

[6] F.J. Beck, S. Mokkapati and K.R. Catchpole: Progress in Photovoltaics: Research and Applications Vol. 18 (2010), pp.500-504

Google Scholar

[7] K.R. Catchpole and A. Polman: Applied Physics Letters Vol. 93 (2008)

Google Scholar

[8] S. Mokkapati, F.J. Beck, A. Polman and K.R. Catchpole: Applied Physics Letters Vol. 95 (2009)

Google Scholar

[9] A. Fave, S. Berger, A. Beaumont, B. Semmache, P. Kleimann, J. Linnroos and A. Laugier: Thin Solid Films Vol. 383 (2001), pp.209-211

DOI: 10.1016/s0040-6090(00)01619-9

Google Scholar

[10] E. Manea, E. Budianu, M. Purica, I. Cernica and F. Babarada: Solar Energy Materials and Solar Cells Vol. 90 (2006), pp.2312-2318

DOI: 10.1016/j.solmat.2006.03.036

Google Scholar

[11] B.M. Kayes, H.A. Atwater and N.S. Lewis: Journal of Applied Physics Vol. 97 (2005), pp.1-11

Google Scholar

[12] X. Wang, K.L. Pey, C.H. Yip, E.A. Fitzgerald and D.A. Antoniadis: Journal of Applied Physics Vol. 108 (2010)

Google Scholar

[13] F. Wang, J.S. Li, S.M. Wong, M.F. Yang, Y.L. Li, X.W. Sun, M.F. Li and H.Y. Yu: in 2010 Photonics Global Conference, PGC 2010 (2010)

Google Scholar

[14] K.Q. Peng, X. Wang, L. Li, X.L. Wu and S.T. Lee: Journal of the American Chemical Society, Vol. 132 (2010), pp.6872-6873

Google Scholar

[15] G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel and C. Seassal: Journal of Applied Physics Vol. 108 (2010)

DOI: 10.1063/1.3506702

Google Scholar

[16] S.E. Han and G. Chen: Nano Letters Vol. 10 (2010), pp.1012-1015

Google Scholar

[17] Information on http://www.luxpop.com/

Google Scholar

[18] S.C. Winton and C.M. Rappaport: Antennas and Propagation, IEEE Transactions on Vol. 48 (2000), pp.1055-1063

Google Scholar

[19] L. Shui-Yang: Thin Solid Films Vol. 518 (2010), p. S10-S13

Google Scholar