[1]
Birnett R, Watson J F, Elder S. The application of modern signal K.Rae cho, Jeffery H,Lang and Stephen D.Umans.Detection of Broken Rotor Bars in Induction Motors Using States and Parameter Estimation. IEEE Transactions on Industry Applications, 1992, 28(3):702~709.rocessing techniques to motor fault detection and location within three-phase induction motors. IEEE Trans on Power Delivery.1995,10(3):426~431.
DOI: 10.1109/28.137460
Google Scholar
[2]
A. Benamara, S.Courtine, GRostaining. fault detection in a DC motor control loop. Proceedings of the 4th IEEE Conference on Control Applications, 1995, pp:186~187.
DOI: 10.1109/cca.1995.555677
Google Scholar
[3]
K.Rae cho, Jeffery H,Lang and Stephen D.Umans.Detection of Broken Rotor Bars in Induction Motors Using States and Parameter Estimation. IEEE Transactions on Industry Applications, 1992, 28(3):702~709.
DOI: 10.1109/28.137460
Google Scholar
[4]
T Lindh, J Ahola, and J K Kamarainen etc. Bearing Damage Detection Based on Statistical D-incrimination of Stator Current, SDEMPED, 2003, 24-26, 177~181.
DOI: 10.1109/demped.2003.1234569
Google Scholar
[5]
V Vapnik.An Overview of Statistical Learning Theory.IEEE Trans NN,1999,10(5):988~999
Google Scholar
[6]
Li dun dun, land ming Quan, feng zhen ming. A kind of base on stand by vector machine de number modulate recognize means. 2005 (17) 9~3:27-29,In Chinese
Google Scholar
[7]
Huang yong, zheng chun ying, Song Dynasty loyal tiger. Many kind stand by vector machine algorithm summarize. 2005.12 (24) 4:61~63,In Chinese
Google Scholar
[8]
C Chandra Sekhar, Kazuya Takeda, Fumitada Itakura. Recognition of Consonant-Vowel(CV) Units of Speech in a Broadcast news Corpus Using Support Vector Machines. Seong-Whan Lee, Alessandro Verri. Patern Recognition with Support Vector Machines. Berlin:Springer, 2002. 171~185
DOI: 10.1007/3-540-45665-1_14
Google Scholar
[9]
Aravind Ganapathiraju. Support Vector Machines for Speech Recognition. Mississippi:Mississippi State University, (2000)
Google Scholar
[10]
Lee, Kyunghee:Chung, Yongwha:Byun, Hyeran. SVM-based face verification with feature set of small size. Electronics Leters.2002,38:787~789
DOI: 10.1049/el:20020591
Google Scholar
[11]
Chih-Wei H su, Chih-Jen L in. A comparison of methods for multi-class support vector machines [ J ]. Neural networks, IEEE Transactions on, 2002, 13 (2) :415~425.
DOI: 10.1109/72.991427
Google Scholar
[12]
Suykens Johan A K, Gestel Tony Van , Brabanter Jos De.Least Squares Support Vector Machines [M] . Singapore :World Scientific Publishers ,2002.
DOI: 10.1142/5089
Google Scholar
[13]
B. Schölkopf, A. Smola, K.R. Muller, Nonlinear component analysis as a kernel eigenvalue problem [J], Neural Comput, 1998, 10(5):1299~1319.
DOI: 10.1162/089976698300017467
Google Scholar
[14]
Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multi-class support vector machines. IEEE Transaction on Neural Network, 13(2),415~425,In Chinese
Google Scholar