[1]
Hindmarsh C J, Thomas K M, Wang W X, et al. A comparison of the pyrolysis of coal in wire-mesh and entrained-flow reactors. Fuel 1995; 74(8): 1185-1190.
DOI: 10.1016/0016-2361(95)00036-5
Google Scholar
[2]
Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel 2002; 81: 539-546.
DOI: 10.1016/s0016-2361(01)00149-1
Google Scholar
[3]
Flaxman R J. Flow and heat transfer in a drop tube furnace. University of Ottawa, 1986.
Google Scholar
[4]
Monson C R, Germane G J. A high-pressure drop-tube facility for coal combustion studies. Energy & Fuels 1993; 7(6): 928-936.
DOI: 10.1021/ef00042a033
Google Scholar
[5]
Ouyang S, Yeasmin H, Mathews J. A pressurized drop-tube furnace for coal reactivity studies. Review of Scientific Instruments 1998; 69(8): 3036-3041.
DOI: 10.1063/1.1149052
Google Scholar
[6]
Matsuoka K, Ma Z X, Akiho H, et al. High-pressure coal pyrolysis in a drop tube furnace. Energy & Fuels 2003; 17(4): 984-990.
DOI: 10.1021/ef020298+
Google Scholar
[7]
Ballantyne T R, Ashman P J, Mullinger P J. A new method for determining the conversion of low-ash coals using synthetic ash as a tracer. Fuel 2005; 84(14-15): 1980-1985.
DOI: 10.1016/j.fuel.2005.04.012
Google Scholar
[8]
Krantz M, Zhang H, Zhu J. Characterization of powder flow: Static and dynamic testing. Powder Technology 2009; 194(3): 239-245.
DOI: 10.1016/j.powtec.2009.05.001
Google Scholar
[9]
Alavi S, Caussat B. Experimental study on fluidization of micronic powders. Powder Technology 2005; 157(1-3): 114-120.
DOI: 10.1016/j.powtec.2005.05.017
Google Scholar
[10]
Wang X Y, Jiang F, Xu X, et al. Experiment and CFD simulation of gas-solid flow in the riser of dense fluidized bed at high gas velocity. Powder Technology 2010; 199 203-212
DOI: 10.1016/j.powtec.2009.12.016
Google Scholar
[11]
Chen W, Gowan G, Shi G, et al. A gravity-driven low-rate particle feeder. Review of Scientific Instruments 2008; 79(8): 83904-83905.
DOI: 10.1063/1.2976110
Google Scholar
[12]
Annamalai K, Ramalingam S C. Group combustion of char carbon particles. Combustion and Flame 1987; 70(3): 307-332.
DOI: 10.1016/0010-2180(87)90111-8
Google Scholar
[13]
Zhengzhong M, Xiang X, Yunhan X. Coal particles combustion model and micro feeding technology in drop tube furnace. Advanced Materials Research 2011; 236-238: 680-683.
DOI: 10.4028/www.scientific.net/amr.236-238.680
Google Scholar
[14]
Seville J, Willett C D, Knight P C. Interparticle forces in fluidisation: a review. Powder Technology 2000; 113: 261-268.
DOI: 10.1016/s0032-5910(00)00309-0
Google Scholar
[15]
Li Q, Rudolph V, Weigl B, et al. Interparticle van der Waals force in powder flowability and compactibility. International Journal of Pharmaceutics 2004; 280(1-2): 77-93.
DOI: 10.1016/j.ijpharm.2004.05.001
Google Scholar
[16]
Feng J Q, Hays D A. Relative importance of electrostatic forces on powder particles. Powder Technology 2003; 135: 65-75.
DOI: 10.1016/j.powtec.2003.08.005
Google Scholar
[17]
Li Q, Rudolph V, Peukert W. London-van der Waals adhesiveness of rough particles. Powder Technology 2006; 161(3): 248-255.
DOI: 10.1016/j.powtec.2005.10.012
Google Scholar
[18]
Shiyuan L, Linlin S, Haipeng T, et al. A model for agglomeration in bio-fuel fired fluidized bed. Journal of Thermal Science 2010; 5(19): 451-458.
Google Scholar
[19]
Krause F, Minkin A. Theoretical and experimental study of horizontal Part 1Theoretical study of horizontal and lightly inclined shaftless screw conveyors. Bulk Solids Handling 2005; 25(3): 172-178.
Google Scholar