Footprint Analysis for Turbulent Flux Measurements over Complex Terrain on the Loess Plateau of China

Article Preview

Abstract:

To understand the spatial representation of flux measurement of the eddy covariance system in the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), footprint was analyzed during representative seasons (summer and winter) from March 2007 to February 2011 by FSAM (Flux Source Area Model). The results indicated that wind direction and atmospheric stability have important effect on footprint. 1) The analysis at different wind directions showed that the location of the maximum footprint function (Xm) in winter was farther from the observation point than that in summer; the source area was the largest in SW, and smallest in NW in both summer and winter; the source area in summer was bigger than that in winter at all directions except for NE. 2) The analysis under different atmospheric stabilities showed that Xm was the farthest from the observation point under stable condition and nearest under unstable condition; the source area was the largest under stable condition and smallest under unstable condition; the source area in summer was bigger than that in winter under all atmospheric stabilities. 3) Moreover, the results showed that the flux measurements of SACOL were representative of two types of topography: flat terrain and mountain terrain.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 516-517)

Pages:

910-916

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.B. Stull: An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, Dordrecht 1988).

Google Scholar

[2] J. Garratt: J. Climate. Vol. 6 (1993), p.419

Google Scholar

[3] M. Aubinet, A. Grelle, A. Ibrom, U. Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, P. Berbigier, C. Bernhofer, R. Clement, J.A. Elbers, A. Granier, T. Gru¨nwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, T. Vesala: Adv. Ecol. Res. Vol. 30 (2000), p.113

DOI: 10.1016/s0065-2504(08)60018-5

Google Scholar

[4] D. Baldocchi, J. Finnigan, K. Wilson, K.T. Paw U, E. Falge: Boundary Layer Meteorol. Vol. 96 (2000), p.257

DOI: 10.1023/a:1002497616547

Google Scholar

[5] H.C. Gashj: Boundary Layer Meteorol. Vol. 35 (1986), p.409

Google Scholar

[6] T.W Horst, J.C Weil: J. Atmos. Oceanic. Technol. Vol. 11 (1994), p.1018

Google Scholar

[7] H.D Haenel, L. Grbnhage: Boundary Layer Meteorol. Vol. 93 (1999), P. 395

Google Scholar

[8] M. Göckede, C. Rebmann, T. Foken: Agric. Forest Meteorol.Vol. 127 (2004), p.175

Google Scholar

[9] P.H. Schuepp, M.Y. Leclerc, J.I. MacPherson, R.L Desjardins: Boundary Layer Meteorol.Vol. 50 (1990), p.355

Google Scholar

[10] M.Y. Leclerc, G.W. Thurtell: Boundary Layer Meteorol. Vol. 52 (1990), p.247

Google Scholar

[11] H.P. Schmid, T.R. Oke: Quart. J. Roy. Meteorol. Soc. Vol. 116 (1990), p.965

Google Scholar

[12] J.D. Wilson, G.E. Swaters: Boundary Layer Meteorol. Vol. 55 (1991), p.25

Google Scholar

[13] H.P Schmid: Boundary Layer Meteor.Vol. 67 (1994), p.293

Google Scholar

[14] T.W. Horst, J.C. Weil: Boundary Layer Meteor. Vol. 59 (1992), p.276

Google Scholar

[15] R. Kormann, F.X. Meixner: Boundary Layer Meteorol.Vol. 99 (2001), p.207

Google Scholar

[16] W. Wang, K.J. Davis, D.M. Ricciuto, M.P. Butler: J. Atmos. Oceanic. Technol.. Vol. 23 (2006b), p.1384

Google Scholar

[17] T.K Flesch: Boundary Layer Meteorol.Vol. 78 (1996), p.399

Google Scholar

[18] D. Baldocchi: Boundary Layer Meteorol. Vol. 85 (1997), p.273

Google Scholar

[19] N. Kljun, R. Kormann, M. Rotach, F.X. Meixner: Boundary Layer Meteorol. Vol. 106 (2003), p.349

Google Scholar

[20] T. Markkanen, Ü. Rannik, B. Marcolla, A. Cescatti, T. Vesala: Boundary Layer Meteorol. Vol. 106 (2003), p.437

DOI: 10.1023/a:1021261606719

Google Scholar

[21] Ü. Rannik, T. Markkanen, J. Raittila, P. Hari, T. Vesala: Boundary Layer Meteorol. Vol. 109 (2003), p.163

DOI: 10.1023/a:1025404923169

Google Scholar

[22] M. Gockede, C. Thomas, T. Markkanen, M. Mauder, J. Ruppert, T.Foken: Tellus. B. Vol. 59 (2007), p.577

Google Scholar

[23] X. Cai, G. Peng, X. Guo, M.Y. Leclerc: Theor. Appl. Climatol. Vol. 93 (2008) , p.207

Google Scholar

[24] M.Y. Leclerc, S. Shen, B. Lamb: J. Geophys. Res. Vol. 120 (1997), p.9323

Google Scholar

[25] J.P. Huang, W. Zhang, J.Q. Zuo, J.R. Bi, J.S. Shi, X. Wang, Z.L. Chang, Z.W. Huang, S. Yang, B.D. Zhang, G.Y. Wang, G.H. Feng, J.Y. Yuan, L. Zhang, H.C. Zuo, S.G. Wang, C.B. Fu, J.F Chou: Adv. Atmos. Sci. Vol. 25 (2008), p.906

DOI: 10.1007/s00376-008-0906-7

Google Scholar

[26] J.Q. Zuo, J.P. Huang, J.M. Wang, W. Zhang, J.R. Bi, G.Y. Wang, W.J. Li, P.J. Fu: Adv. Atmos. Sci. Vol. 26 (2009), p.679

Google Scholar

[27] W. Brutsaert: Evaporation into the Atmosphere: Theory, History, and Applications (D. Reidel Publish Company, Dordrecht 1982).

Google Scholar

[28] H.P. Schmid, H.A. Cleugh, C.S.B. Grimmond, T.R. Oke: Boundary Layer Meteorol. Vol. 54 (1991), p.249

DOI: 10.1007/bf00183956

Google Scholar