Multiwall Carbon Nanotubes-Modified Glassy Carbon Electrode for Square-Wave Stripping Voltammetric Determination of Aqueous Antimony (III) Ion

Article Preview

Abstract:

A glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) for electrochemical square-wave stripping voltammetric (SWV) determination of antimony (III) was introduced. Various experimental parameters, such as the amounts of carbon nanotubes, the deposition potential and time, the electrolyte solution, etc, were thoroughly optimized and discussed. Under the optimum experimental conditions, the MWCNTs-modified GCE exhibited well linear behaviour in the antimony(III) concentration range from 0.04 to 0.26 mg/L (R=0.9983) with a detection limit of 3.20×10-4 mg/L (S/N=3) under a 360 s accumulation. The proposed electrode also exhibited encouraging properties for measurements of simulated water samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

1571-1575

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.A. Maher: Environ. Chem. Vol.6 (2009), p.93

Google Scholar

[2] J.F.J. Carlin: U.S. Geological Survey, Mineral Commodity Summaries, January 2011-Antimony (U.S. Geological Survey, 2011).

Google Scholar

[3] D.S.T. Hjortenkrans, B.G. Bergbaeck, and A.V. Haeggerud: Environ. Sci. Technol. Vol. 41 (2007), p.5224

Google Scholar

[4] E. Perre, P.L. Taberna, D. Mazouzi, P. Poizot, T. Gustafsson, K. Edstrom and P. Simon: J. Mater. Res. Vol. 25 (2010), p.1485

DOI: 10.1557/jmr.2010.0190

Google Scholar

[5] F. Quentel and M. Filella: Anal. Chim. Acta. Vol. 452 (2002), p.237

Google Scholar

[6] GB/T 1819.6-2004, Methods for chemical analysis of tin concentrates—Determination of antimony content—The malachite green spectrometric method and the flame atomic absorption spectrometric method. (In Chinese)

DOI: 10.3403/30218947

Google Scholar

[7] O. Dominguez-Renedo, M.J.G. Gonzalez and M.J. Arcos-Martinez: Sensors Vol.9 (2009), p.220

Google Scholar

[8] P. Smichowski, Y. Madrid and C. Camara: Fresenius J. Anal. Chem. Vol. 360 (1998), p.623

Google Scholar

[9] S. Dong, G. Che and Y. Xie: Chemical Modified Electrode (Science Press, Beijing1995). (In Chinese)

Google Scholar

[10] D. Stankovic, D. Manojlovic, G. Roglic, S. Kostic-Rajacic, I. Andjelkovic, B. Dojcinovic and J. Mutica: Electroanal. Vol. 23 (2011), p. (1928)

DOI: 10.1002/elan.201100189

Google Scholar

[11] C.N. Rao, B.C. Satishkumar, A. Govindaraj and M. Nath: Chem. Phys. Chem. Vol. 2 (2001), p.79

Google Scholar

[12] G. Wang, Z. Shi, G. Zhu, S. Cao, J. Yin and L. Wang: Ptca (Part B: Chem. Anal.) Vol. 44 (2008), p.801 (In Chinese)

Google Scholar

[13] G.A.E. Mostafa: Talanta Vol. 71 (2007), p.1449

Google Scholar

[14] A. Salimi, A. Korani, R. Hallaj and R. Khoshnavazi: Electroanal. Vol. 20 (2008), p.2509

Google Scholar

[15] V.S. Santos, W.de J. Rodrigues-Santos, L.T. Kubota and C. Ricardo-Teixeira Tarley: J. Pharmaceut. Biomed. Vol. 50 (2009), p.151

Google Scholar

[16] O. Dominguez-Renedo, M.J.G. Gonzalez and M.J. Arcos-Martinez: Sensors Vol. 9 (2009), p.219

Google Scholar

[17] K. Zarei, M. Atabati and M. Karami: Anal. Chim. Acta Vol. 649 (2009), p.62

Google Scholar

[18] N. Nakiboglu, I. Sahin and F.N. Ertas: Anal. Lett. Vol. 41 (2008), p.2621

Google Scholar

[19] A. Manová, M.Střelec and E. Beinrohr: Pol. J. Environ. Stud. Vol. 16 (2007), p.607

Google Scholar