Numerical Simulation of SiO2 Fouling While Evaporating High Concentration Extracted Oil Wastewater

Article Preview

Abstract:

This article aims at fouling situation while extracted oil wastewater evaporating and has analyzed the change process in wastewater SiO2. We point out influence of the formation of fouling SiO2 pre-condition—supersaturation and establish SiO2 crystallization precipitation model and equation. The results show that concentration ratio and evaporation temperature increase to help fouling formation to give rise to fouling heat resistance elevating. The increase of extracted oil wastewater flow rate loop reduce the fouling heat resistance and improve the efficiency of heat utilize. Through simulation , we master main influencing factors of fouling heat resistance and grain a good foundation to design the experiment scheme in the future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3231-3235

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] By G. B. Alexander, W. M. Heston, R. K. Iler. Vol.58(1954),p.453

Google Scholar

[2] Ralph K. Iler:The chemistry of silica. (A Wiley-Interscience Publication. New York. 1979).

Google Scholar

[3] Deng Julong:Agricultural system of grey theory method. (Shandong science and technology press.1988).

Google Scholar

[4] Matson, J. V., U . S. Patent 4,276,180.(1981)

Google Scholar

[5] Ding Wancheng,Wang Zhuofei,Wu Ping.Computer Applications of Petroleum.Vol.3(2010), p.43

Google Scholar

[6] Cao Shengxian. North China electric power University.( 2009)

Google Scholar

[7] Epstein, N. Particulate Fouling of Heat Transfer Surfaces:Mechanisms and Models, in Fouling Science and Technology. (Kluwer Academic Publishers.1988).

DOI: 10.1007/978-94-009-2813-8_10

Google Scholar

[8] Hasson, D., Sherman, H., Biton, M. Prediction of Calcium Carbonate Scaling Rates. Proc.(1978)

Google Scholar

[9] Hasson, D. Precipitation Fouling—A Review. (New York. 1981.)

Google Scholar

[10] Adomeit, P., Renz, U. Deposition of Fine Particles from Aqueous Suspensions. (1994)

Google Scholar

[12] Andritsos, N., Kontopoulou, M., Karabelas, A. J., et al. Can. J. Chem. Eng. 1996, Vol.74(1996),p.911

Google Scholar

[13] Zhang Shuguang, Lei Wu,Wang Jinxiang, et al. Ptca. Vol.40(2004),p.27

Google Scholar

[14] Mengyan Yang, Andrew Young, Amir Niyetkaliyev, et al. International Journal of Thermal Sciences. Vol.51(2012), p.175

Google Scholar

[15] Edward. M. Ishiyama, Francesco Coletti, Sandro Macchietto, et al. AIChE Journal. Vol.56(2010), p.531

Google Scholar

[16] S. Briarqon, D. Colson, J.P. Klein. Chemical Engineering Journal. Vol.70 (1998), p.55

Google Scholar

[17] R. Sheikholeslami. Heat Transfer Engineering. Vol.21(2000), p.24

Google Scholar

[18] Fahmi Brahim, Wolfgang Augustin, Matthias Bohnet. International Journal of Thermal Sciences. 2003, Vol.42(2003), p.323

Google Scholar

[19] T. R. Bott. Experimental Thermal and Fluid Science. Vol.14(1997), p.356

Google Scholar

[20] Kern D Q, Seaton R E. British chemical engineering. 1959, Vol.4(1959), p.258

Google Scholar

[21] Hong Yu. The University of New South Wales. (2003)

Google Scholar