Effect of UV-B Radiation on GSH and GSH-Related Enzymes of Brown Alga Sargassum thunbergii (Mert.) O.Kuntze

Article Preview

Abstract:

The effect of UV-B radiation on activities of the glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferases (GST) and GSH content in Sargassum thunbergii, an intertidal macroalgae, were analyzed. While GR and GPx activities were relative stable in a low dosage of UV-B radiation (Luv), they decreased significantly under high dosage of UV-B radiation (Huv) with prolonged exposure. However, the activity of GST in Huv treatment did not decrease obviously in comparison with that of the control. GSH content increased rapidly under Luv and a medium dosage of UV-B radiation (Muv) with moderate exposure in the early stage. H2O2 and TBARS accumulated rapidly, particularly for Muv and Huv treatments. These data indicate that S. thunbergii lacks tolerance to relatively higher dose of UV-B stress, although GSH-related enzymes may play certain role against UV-B induced oxidative damage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

5442-5445

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sinha RP, Ambasht NK, Sinha JP, Klisch and Häder DP: J. Photochem. Photobiol. B Vol.71 (2003), pp.51-58

Google Scholar

[2] van de Poll WH, Eggert A, Buma AGJ and Breeman AM: J. Phycol Vol.37 (2001), pp.30-38

Google Scholar

[3] Malanga G, Puntarulo S: Physiol. Plant Vol. 94 (1995), pp.672-679

Google Scholar

[4] Aguilera J, Bischof K, Karsten U, Hanelt D and Wiencke C: Mar. Biol. Vol.140 (2002), pp.1087-1095

Google Scholar

[5] Shiu CT, Lee TM: J. Exp.Bot Vol. 56 (2005), pp.2851-2865

Google Scholar

[6] Guillard R R, Ryther J H: Can. J. Microbiol, Vol.8(1962),pp.229-239

Google Scholar

[7] Caldwell MM: Photophysiology (Academic Press, U.S.A 1971)

Google Scholar

[8] Knörzer O C, Durner J and Böger P: Physiol. Plant Vol. 97 (1996), pp.388-396

Google Scholar

[9] Huang AY, Wu ZL: Journal of Southwest Agricultural University Vol. 21 (1999), pp.324-327(in chinese)

Google Scholar

[10] Davis DG, Swanson HR: Environ. Exp. Bot Vol.46 (2001), pp.95-108

Google Scholar

[11] Ellman G L: Arch. Biochem. Biophys Vol. 18 (1959), pp.70-77

Google Scholar

[12] Alexieva V, Sergiev I, Mapelli S and Karanov E: Plant Cell Environ Vol. 24 (2001), pp.1337-1344

Google Scholar

[13] Health R L, Packer G: Arch. Biochem. Biophys Vol.125 (1968), pp.189-198

Google Scholar

[14] Siriwardhana N, Lee KW, Kim SH, Ha WJ and Jeon YJ: Algae Vol. 19 (2004), pp.59-68

Google Scholar

[15] Tziveleka LA, Vagias C and Roussis V: Curr. Top. Med. Chem Vol. 3 (2003), pp.1512-1535

Google Scholar

[16] Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH and Tevini M: J. Photochem. Photobiol. Vol. 46 (1998), pp.40-52

DOI: 10.1016/s1011-1344(98)00184-5

Google Scholar

[17] Li LX, Dong KS and Tang XX: J. Environ. Sci Vol. 22(2010), pp.716-722

Google Scholar

[18] Foti M, Piatelli M, Amico V and Ruberto G: J. Photochem. Photobiol. B Vol. 26 (1994), pp.159-164

Google Scholar

[19] Pavia H, Cervin G, Lindgren A and Åberg P: Mar. Ecol. Prog. Ser Vol. 157 (1997), pp.139-146

DOI: 10.3354/meps157139

Google Scholar

[20] Hoyer K, Karsten U, Sawall T and Wiencke C: Mar. Ecol. Prog. Ser Vol. 211 (2001), pp.117-129

DOI: 10.3354/meps211117

Google Scholar