[1]
IEA Report. CO2 Capture and Storage: A Key Carbon Abatement Option [R].2008.
Google Scholar
[2]
Ren Xiangkun, Cui Yongjun, Bu Xuepeng, et al. Analysis on CO2 Storage Potentiality in Ordos Basin. Energy of China. 2010, 32 (1):29-32 (in Chinese)
Google Scholar
[3]
Xiaochun Li, Zhiming Fan, Ning Wei, et al. Discussion on technical roadmap of CO2 capture and storage in China. Rock and Soil Mechanics. 2009, 30 (9): 2674-2678 (in Chinese)
Google Scholar
[4]
Xiaochun Li, Yanfeng Liu, Bing Bai, et al. Ranking and screening of CO2 saline aquifer storage zones in China. Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968 (in Chinese)
Google Scholar
[5]
H.G. Yu, G.Z. Zhou, W.T. Fan, et al. Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China. International Journal of Coal Geology, 2007, 71(2-3):345-357.
DOI: 10.1016/j.coal.2006.10.002
Google Scholar
[6]
Yanfeng Liu, Xiaochun Li, Bing Bai. Preliminary estimation of CO2 storage capacity of coalbeds in China. Journal of Rock Mechanics and Engineering, 2005, 24(16): 2947-2952 (in Chinese)
Google Scholar
[7]
Yan-feng Liu, Xiaochun Li, Zhiming Fang, et al. Preliminary estimation of CO2 storage capacity in gas fields in China. Rock and Soil Mechanics, 2006, 27(12): 2277-2281 (in Chinese)
Google Scholar
[8]
Shilun Li, Zhengqing Zhang, Xinquan Ran, et al. The technology of EOR by gas injection. Sichuan Science and Technology Press. 2001, 6: 16-230 (in Chinese)
Google Scholar
[9]
Yousef Ghomian, Gary A. Pope, Kamy Sepehrnoori. Hysteresis and Field-Scale Optimization of WAG Injection for Coupled CO2-EOR and Sequestration. SPE 110639-MS
DOI: 10.2118/110639-ms
Google Scholar
[10]
Wei Yan and Erling H. Stenby. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG. SPE 131094-MS
DOI: 10.2118/131094-ms
Google Scholar
[11]
A.A. Aleidan, D.D. Mamora, D.S. Schechter. Experimental and Numerical Simulation Studies of Different Modes of CO2 Injection in Fractured Carbonate Cores. SPE 143512-MS
DOI: 10.2118/143512-ms
Google Scholar
[12]
J.Vuillaume, I. Akervoll, P.Bergmo. CO2 Injection Efficiency - Synthesis of Conceptual Chalk Model: Incremental Recovery and CO2 Storage Potential. SPE 143531-MS
DOI: 10.2118/143531-ms
Google Scholar
[13]
Istvan U.M.P, Tibor F.M.P. CO2 gas+WAG+water injection in the same oil reservoir.SPE 143833
Google Scholar
[14]
Ping Guo, Zhiwang Yuan; Guangzhi Liao. Status and enlightenment of international gas injection EOR technology. Natural Gas Industry. 2008, 29(8):92-96(in Chinese)
Google Scholar
[15]
Wei Wu. Numerical simulation of the buried hill reservoir in the Sudeerte oilfield. Special oil Gas Reservior. 2011,18(2): 82-84 (in Chinese)
Google Scholar
[16]
van Lingen, P.P., Barzanji, O.H.M., van Kruijsdijk, C.P.J.W. WAG Injection to Reduce Capillary Entrapment in Small-Scale Heterogeneities. SPE 36662-MS
DOI: 10.2118/36662-ms
Google Scholar
[17]
Wegener D.C., Harpole, K.J. Determination of Relative Permeability and Trapped Gas Saturation for Predictions of WAG Performance in the South Cowden CO2 Flood. SPE 35429-MS
DOI: 10.2118/35429-ms
Google Scholar
[18]
M. Dong, J. Foraie, S. Huang, I. Chatzis. Analysis of Immiscible Water-Alternating-Gas (WAG) Injection Using Micromodel Tests. Journal of Canadian Petroleum Technology. 2005, 44(2)
DOI: 10.2118/05-02-01
Google Scholar
[19]
Alireza Mollaei, Mojdeh Delshad. A Novel Forecasting Tool for WAG Floods. SPE 148742-MS
Google Scholar
[20]
Zhou Wanshan. Numerical simulation study and practice on buried-hill reservoir development with overlapped horizontal well. Fault-Block Oil & Gas Field. 2010 ,17(5): 602-604 (in Chinese)
Google Scholar