[1]
Juan Li Backward stochastic differential equations With general martingale[J].Journal of Shandong University, 2005, vol 40 4:70-76
Google Scholar
[2]
Lepeltier, J.,Martin, J. Backward stochastic differential equations with continuous coeffcient[J]. Statist Probab Lett., 1997, 32:425-430.
DOI: 10.1016/s0167-7152(96)00103-4
Google Scholar
[3]
Mao, X. Adapted solutions of backward stochastic differential equations with non-Lipschitz coeffcients[J]. Stochastic Process Appl,1995,58:281-292.
DOI: 10.1016/0304-4149(95)00024-2
Google Scholar
[4]
Jicheng Liu, Jiagang Ren. Comparison theorem for solution of backward stochastic differential equations with continuous coefficient[J]. Statist Probab Lett., 2002,(56), 93-100.
DOI: 10.1016/s0167-7152(01)00178-x
Google Scholar
[5]
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,Systems control Lett. 14(1990), 51-61.
DOI: 10.1016/0167-6911(90)90082-6
Google Scholar
[6]
Cao Z., Yan J. A Comparison Theorem for Solutions of Backward Stochastic Differential Equations[J]. Advanced in Mathematics, 1999, 28: 304-308
Google Scholar
[7]
Peng S. A generalized dynamic programming principle and Hamilton-Jacob-Bellman equation [J].Stochastics, 1992,(38):119-134.
DOI: 10.1080/17442509208833749
Google Scholar
[8]
Shiyu Li,Wujun Gao. The comparison theorem of backward stochastic differential equations [J]. Journal of Jiangxi University of Science and Technology,2010, 31(5):67-69.
Google Scholar
[9]
Shiyu Li,Wujun Gao. Solution of backward stochastic differential equations driven by continuous local martingales[J]. Journal of Jiangxi University of Science and Technology,2009, 30(5):71-73.
Google Scholar
[10]
S. Peng, A nonlinear Feynman-Kac formula and applications, in: Proceedings of Sym-posium of System Sciences and Control Theory , Chen and Yong eds., 173-184, World Scientific, Singap ore, 1992.
Google Scholar