Weighted-Correct Empirical likelihood for Linear EV Models

Article Preview

Abstract:

The empirical likelihood inference based weighted correction in linear EV model with missing responses is studied. A weighted-correct empirical likelihood method is developed. It can be shown that the weighted-correct empirical likelihood ratio is asymptotically standard chi-square. The results can be used directly to construct the asymptotic confidence regions of the unknown parameters. The estimation procedure is relatively simple and the estimated efficiency has been greatly improved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 524-527)

Pages:

3884-3887

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Hsiao. Consistent Estimation for Some Nonlinear Error-in-variable Models. J. Econometrics. 1989, 41:159-185.

DOI: 10.1016/0304-4076(89)90047-x

Google Scholar

[2] H. J. Cui, R. C. Li. On Parameter Estimation for Semi-linear Errors-in-Variables Models. J. Multi. Anal. 1998, 64: 1-24.

Google Scholar

[3] H. Liang, W. Hardle and R. J. Carroll. Estimation in a semiparametric partially linear errors-in-variables model. Ann. Statis. 1999, 27(5): 1519-1535.

DOI: 10.1214/aos/1017939140

Google Scholar

[4] H. J.Cui, X. S.Chen. Empirical likelihood confidence region for parameter in the errors-in-variables, J.Multi. Anal. vol.84: pp.101-115 , 2003.

DOI: 10.1016/s0047-259x(02)00017-9

Google Scholar

[5] A.Delaigle, A.Meister. Nonparametric regression estimation in the heterscedastric errors-in-varialbles problem, J.Amer. Statis. Asso. 2007,102(480):1416-1426.

DOI: 10.1198/016214507000000987

Google Scholar

[6] Q. Liu, L.G. Xue. Empirical likelihood confidence regions for the parameter of a linear EV model with missing data, Math. Pract. Theor.2008, 38(24):147-151 .(In Chinese)

Google Scholar

[7] Q. Liu, L.G. Xue. Asymptotic properties for the partially linear EV models under longitudinal data, Acta Math. Appl. Sinica.vol. 32 no.1, pp,178-189,2009.(In Chinese)

Google Scholar

[8] A. Delaigle, J.Fan, R.J. Carroll. A design-adaptivpolynomial estimator for the errors-in-varialbles problem, J.Amer. Statis. Asso. 2009,104(485):348-359.

Google Scholar

[9] Q. Liu. Asymptotic Properties of estimators of parameters for mixed-effects EV model with longitudinal data,J. Applied Statis. Mana., 2011,30(3):424-430. (In Chinese)

Google Scholar

[10] Q. Liu. Asymptotic normality for the partially linear EV models with longitudinal data, Comm. Statis.Theo. Meth., 2011, 40(7): 1149 - 1158.

DOI: 10.1080/03610920903556541

Google Scholar

[11] A. Owen. Empirical Likelihood Ratio Confidence Intervals for a Single Function. Biometrika. 1988, 75(2): 237 – 249.

DOI: 10.1093/biomet/75.2.237

Google Scholar

[12] A. Owen. "Empirical likelihood ratio confidence regions", Ann. Statist. 1990, 18(1): 90-120.

DOI: 10.1214/aos/1176347494

Google Scholar

[13] Q.H. Wang, J.N.K. Rao, "Empirical likelihood-based inference in linear models with missing data", Scand. J. Statist. 2002, 29: 563-576.

DOI: 10.1111/1467-9469.00306

Google Scholar

[14] H.J. Cui, E. Kong, "Empirical likelihood confidence region for parameters in semi-linear errors-in-variables models", Scan.J.Statist. 2006, 33: 153-168.

DOI: 10.1111/j.1467-9469.2006.00468.x

Google Scholar

[15] L.G. Xue, "Empirical likelihood for linear models with missing responses", J. Multi. Anal.2009, 100:1353-1366.

Google Scholar

[16] Q. Liu, L.G. Xue and F.Chen. Empirical likelihood confidence regions of parameters in a censored partially linear EV model. Acta Math.Sinica, 2009,52(3): 549-560. (In Chinese)

Google Scholar

[17] Q. Liu. Estimation of the linear EV model with censored data, J. Statis. Plan. Infer. 2011, 141(7): 2463- 2471.

Google Scholar