[1]
C. Hsiao. Consistent Estimation for Some Nonlinear Error-in-variable Models. J. Econometrics. 1989, 41:159-185.
DOI: 10.1016/0304-4076(89)90047-x
Google Scholar
[2]
H. J. Cui, R. C. Li. On Parameter Estimation for Semi-linear Errors-in-Variables Models. J. Multi. Anal. 1998, 64: 1-24.
Google Scholar
[3]
H. Liang, W. Hardle and R. J. Carroll. Estimation in a semiparametric partially linear errors-in-variables model. Ann. Statis. 1999, 27(5): 1519-1535.
DOI: 10.1214/aos/1017939140
Google Scholar
[4]
H. J.Cui, X. S.Chen. Empirical likelihood confidence region for parameter in the errors-in-variables, J.Multi. Anal. vol.84: pp.101-115 , 2003.
DOI: 10.1016/s0047-259x(02)00017-9
Google Scholar
[5]
A.Delaigle, A.Meister. Nonparametric regression estimation in the heterscedastric errors-in-varialbles problem, J.Amer. Statis. Asso. 2007,102(480):1416-1426.
DOI: 10.1198/016214507000000987
Google Scholar
[6]
Q. Liu, L.G. Xue. Empirical likelihood confidence regions for the parameter of a linear EV model with missing data, Math. Pract. Theor.2008, 38(24):147-151 .(In Chinese)
Google Scholar
[7]
Q. Liu, L.G. Xue. Asymptotic properties for the partially linear EV models under longitudinal data, Acta Math. Appl. Sinica.vol. 32 no.1, pp,178-189,2009.(In Chinese)
Google Scholar
[8]
A. Delaigle, J.Fan, R.J. Carroll. A design-adaptivpolynomial estimator for the errors-in-varialbles problem, J.Amer. Statis. Asso. 2009,104(485):348-359.
Google Scholar
[9]
Q. Liu. Asymptotic Properties of estimators of parameters for mixed-effects EV model with longitudinal data,J. Applied Statis. Mana., 2011,30(3):424-430. (In Chinese)
Google Scholar
[10]
Q. Liu. Asymptotic normality for the partially linear EV models with longitudinal data, Comm. Statis.Theo. Meth., 2011, 40(7): 1149 - 1158.
DOI: 10.1080/03610920903556541
Google Scholar
[11]
A. Owen. Empirical Likelihood Ratio Confidence Intervals for a Single Function. Biometrika. 1988, 75(2): 237 – 249.
DOI: 10.1093/biomet/75.2.237
Google Scholar
[12]
A. Owen. "Empirical likelihood ratio confidence regions", Ann. Statist. 1990, 18(1): 90-120.
DOI: 10.1214/aos/1176347494
Google Scholar
[13]
Q.H. Wang, J.N.K. Rao, "Empirical likelihood-based inference in linear models with missing data", Scand. J. Statist. 2002, 29: 563-576.
DOI: 10.1111/1467-9469.00306
Google Scholar
[14]
H.J. Cui, E. Kong, "Empirical likelihood confidence region for parameters in semi-linear errors-in-variables models", Scan.J.Statist. 2006, 33: 153-168.
DOI: 10.1111/j.1467-9469.2006.00468.x
Google Scholar
[15]
L.G. Xue, "Empirical likelihood for linear models with missing responses", J. Multi. Anal.2009, 100:1353-1366.
Google Scholar
[16]
Q. Liu, L.G. Xue and F.Chen. Empirical likelihood confidence regions of parameters in a censored partially linear EV model. Acta Math.Sinica, 2009,52(3): 549-560. (In Chinese)
Google Scholar
[17]
Q. Liu. Estimation of the linear EV model with censored data, J. Statis. Plan. Infer. 2011, 141(7): 2463- 2471.
Google Scholar