[1]
Madison, L.L., and Huisman, G.W. Metabolic engineering of poly- (3-hydroxyalkanoates): from DNA to plastic. Microbial. Mol. Biol. Vol. 63 (1999), p.21–53.
DOI: 10.1128/mmbr.63.1.21-53.1999
Google Scholar
[2]
Kim, Y.B., and Lenz, R.W. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. vol. 71(2001), p.51–79.
Google Scholar
[3]
Reddy, C.S., Ghai, R., and Rashmi, Kalia, V.C. Polyhydroxyalkanoates: an overview. Bioresour. Technol. vol. 87(2003), p.137–146.
DOI: 10.1016/s0960-8524(02)00212-2
Google Scholar
[4]
Chien, C. C., C. C. Chen, M. H. Choi, S. S. Kung, and Y. H. Wei. Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J. Biotechnol. vol. 132 (2007), pp.259-263.
DOI: 10.1016/j.jbiotec.2007.03.002
Google Scholar
[5]
Chua H., Yu P.H.F., Xing S. and Ho L.Y. Potential of biodegradable plastics as environmentally-friendly substitutes for conventional plastics in Hong Kong. Presented at the 17th Sympossium on Biotechnology for Fuels and Chemicals, Colorado, U.S.A. (1995).
Google Scholar
[6]
Reusch R N. Poly-β-hydroxybutyrate calium polyphos- phate complexes in eukaryotic membranes. Process in Polymer Science. vol. 191(1981), pp.377-381.
Google Scholar
[7]
Luengo, J.M., Garcia, B., Sandoval, A., Naharro, G., Olivera, E.R. Bioplastics from microorganisms. Curr. Opin. Microbiol. vol. 6(2003), p.251–260.
DOI: 10.1016/s1369-5274(03)00040-7
Google Scholar
[8]
Hahn, S.K., Chang, Y.K., Kim, B.S., Chang, H.N. Optimization of microbial poly (3-hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform. Biotechnol. Bioeng. vol. 44(1944), p.256–261.
DOI: 10.1002/bit.260440215
Google Scholar
[9]
Hahn, S.K., Chang Y.K., Kim, B.S., Lee, K.M., Chang, H.N. The recovery of poly(3-hydroxybutyrate) by using dispersion of sodium hypochlorite solution and chloroform. Biotechnol. Tech. vol. 7(1993), p.209–212.
DOI: 10.1007/bf02566149
Google Scholar
[10]
Hahn, S.K., Chang, Y.K., Lee, S.Y. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligens eutrophus and recombinant, Escherichia coll. Appl. Environ. Microbiol. vol. 61(1995), p.34–39.
DOI: 10.1128/aem.61.1.34-39.1995
Google Scholar
[11]
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Revvol, vol. 38(2009), pp.2434-2446.
DOI: 10.1039/b812677c
Google Scholar
[12]
Dong Y, Li P, Chen C, Wang ZH, Ma P, Chen GQ. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials, vol 31(2010).
DOI: 10.1016/j.biomaterials.2010.08.001
Google Scholar
[13]
Valappil, S.P., Boccaccini, A.R., Bucke, C., Roy, I., a. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the general Bacillus and Streptomyces. Antonie van Leeuwenhoek, vol. 91(2007), pp.1-17.
DOI: 10.1007/s10482-006-9095-5
Google Scholar
[14]
Halami, P. M. Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol. Biotechnol., vol. 24(2008), pp.805-812.
DOI: 10.1007/s11274-007-9543-z
Google Scholar