Synthesis of Perylene-Containing Polyimides for Non-Covalent Functionalization of Graphene by Self-Assembly

Article Preview

Abstract:

A perylene-containing polyimide (PPI) has been successfully synthesized by thermal polycondensation of perylene-3,4,9,10-tetracarboxylic acid dianhydride and 2,2′-(ethylenedioxy)-diethylamine at high temperature. The as-prepared graphite oxide was ultrasonically exfoliated followed by solvothermal-reduction in N-methyl-2-pyrrolidone in the presence of PPI, yielding PPI-functionalized graphene nanosheets. It was found that PPI chains were non-covalently attached to the conjugated basal plane of graphene to form self-assembly nanostructures by π–π stacking. The present work may open a new route for the fabrication of polymer composites containing graphene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-121

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Allen, V.C. Tung and R.B. Kaner: Chem. Rev. Vol. 10 (2010), p.132.

Google Scholar

[2] H. Bai, C. Li and G. Shi: Adv. Mater. Vol. 23 (2011), p.1089.

Google Scholar

[3] A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[4] P.W. Sutter, J.I. Flege and E.A. Sutter: Nat. Mater. Vol. 7 (2008), p.406.

Google Scholar

[5] J.N. Coleman: Adv. Funct. Mater. Vol. 19 (2009), p.3680.

Google Scholar

[6] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price and J.M. Tour: Nature Vol. 458 (2009), p.872.

DOI: 10.1038/nature07872

Google Scholar

[7] S. Park and R.S. Ruoff: Nat. Nanotechnol. Vol. 4 (2009), p.217.

Google Scholar

[8] C. Nethravathi and M. Rajamathi: Carbon Vol. 46 (2008), p. (1994).

Google Scholar

[9] S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang and R.B. Kaner: ACS Nano Vol. 4 (2010), p.3845.

DOI: 10.1021/nn100511a

Google Scholar

[10] S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen and R. Ruoff: Carbon Vol. 45 (2007), p.1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[11] D.Y. Cai and M. Song: J. Mater. Chem. Vol. 20 (2010), p.7906.

Google Scholar

[12] S. Niyogi, E. Bekyarova, M.E. Itkis, H. Zhang, K. Shepperd, J. Hicks, M. Sprinkle, C. Berger, C.N. Lau, W.A. Deheer, E.H. Conrad and R.C. Haddon: Nano Lett. Vol. 10 (2010), p.4061.

DOI: 10.1021/nl1021128

Google Scholar

[13] Y.K. Yang, C.E. He, R.G. Peng, A. Baji, X.S. Du, Y.L. Huang, X.L. Xie and Y. -W. Mai: J. Mater. Chem. Vol. 22 (2012), p.5666.

Google Scholar

[14] Y.K. Yang, C.E. He, W.J. He, L.J. Yu, R.G. Peng, X.L. Xie, X.B. Wang and Y. -W. Mai: J. Nanopart. Res. Vol. 13 (2011), p.5571.

Google Scholar

[15] H.P. Viet, V.C. Tran, S.H. Hur, E. Oh, E.J. Kim, E.W. Shin and J.S. Chung: J. Mater. Chem. Vol. 21 (2011), p.3371.

Google Scholar

[16] L.Q. Xu, L. Wang, B. Zhang, C.H. Lim, Y. Chen, K. -G. Neoh, E.T. Kang and G.D. Fu: Polymer Vol. 52 (2011), p.2376.

Google Scholar