Photocatalytic Activity of Pd Doped Tin Dioxide Inverse Opal Films

Article Preview

Abstract:

Inverse opal films (IOFs) of SnO2 doped with Pd were prepared by the self-assembly technique using polystyrene microsphere (PS sphere) as template in combination with a sol-gel method. The photocatalysis properties of SnO2 IOFs were estimated through measuring the rate of the degradation of methylene blue (MB). The result shows that SnO2 IOFs have good photocatalytic activity, the solution of MB was degradated over 60% in 4 hours when it was dipped in SnO2 IOFs and exposed in the UV light. The addition of Pd in SnO2 IOFs improved the photocatalytic activity of the films and the degradation of MB can exceed 80% with the same condition. This sort of SnO2 IOFs doped with Pd indicated a potential application in photocatalysis field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-140

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, X.H. Wu, Y. F . Li, and Z.L. Zhou: Solid-State Electronics. 48 (2004) 627-632.

Google Scholar

[2] D. A. Gaal and J. T. Hupp: Journal of the American Chemical Society. 122 (2000) 10956-10963.

Google Scholar

[3] J. R. Bellingham, W.A. Philips, and C.J. Adkins: Journal of Materials Science Letters. 11 (1992) 263-265.

Google Scholar

[4] V. L. Cebolla, R. Bacaud, M. Besson, and D. Cagniant: Bulletin De La Societe Chimique De France, 1987. pp.935-942.

Google Scholar

[5] J. Liu, W. Li, and A. Manhiram: Chemical Communications. 46 (2010) 1437-1439.

Google Scholar

[6] H. J. Snaith and C. Ducati: Nano Letters. 10 (2010) 1259-1265.

Google Scholar

[7] L. Zhang, F. Lv, W. Zhang, R. Li, H. Zhong, Y. Zhao, Y. Zhang and X. WangL: Journal of Hazardous Materials. 171 (2009) 294-300.

Google Scholar

[8] S. H. Hwang, C. Kim, and J. Jang: Catalysis Communications. 12 (2011) 1037-1041.

Google Scholar

[9] A. Esmaielzadeh Kandjani, M. Farzalipour Tabriz, N.A. Arefian, M.R. Vaezi, F. Halek, and S.K. Sadrnezhaad: Water Science & Technology. 62 (2010) 1256.

DOI: 10.2166/wst.2010.156

Google Scholar

[10] B. Esen, T. Yumak, A. Sinag, and T. Yildiz: Photochemistry and Photobiology. 87 (2011) 267-274.

Google Scholar

[11] M. S. Chan and J. R. Bolton: Solar Energy. 24 (1980) 561-574.

Google Scholar

[12] K. Gurunathan, P. Maruthamuthu, and M.V.C. Sastri: International Journal of Hydrogen Energy. 22 (1997) 57-62.

Google Scholar

[13] V. Gombac, L. Sordelli, T. Montini, J.J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal, and P. Fornasiero: Journal of Physical Chemistry A. 114 (2010) 3916-3925.

DOI: 10.1021/jp907242q

Google Scholar

[14] K. Melghit, A.K. Monhammed, and I. Al-Amri: Materials Science and Engineering: B. 117 (2005) 302-306.

Google Scholar

[15] L. F. Hu, J. Yan, M.Y. Liao, L.M. Wu, and X.S. Fang: Small. 7 (2011) 1012-1017.

Google Scholar

[16] L. Vayssieres and M. Graetzel: Angewandte Chemie-International Edition. 43 (2004) 3666-3670.

Google Scholar

[17] W. Wu, S.F. Zhang, F. Ren, X.H. Xiao, J. Zhou, and C.Z. Jiang: Nanoscale. 3 (2011) 4676-4684.

Google Scholar

[18] J. C. Lytle, H.W. Yan, N.S. Ergang, W.H. Smyrl, and A. Stein: Journal of Materials Chemistry. 14 (2004) 1616-1622.

Google Scholar

[19] G. B. Hoflund and Z. L: Applied Surface Science. 253 (2006) 2830-2834.

Google Scholar