Steam Reforming of Acetic Acid for Hydrogen Production: Thermodynamic Calculations

Article Preview

Abstract:

In our work, acetic acid was used as a bio-oil model compound. Thermodynamic calculation of hydrogen production via steam reforming of acetic acid was attempted to investigate the effects of temperature (200-1100 °C), pressure(1-19 atm )and steam to carbon ratio (1.5-10.5) on the concentration of equilibrium product gas and H2 yield. The results show that temperature has a profound effect on the steam reforming of acetic acid. Lower pressure and higher steam to carbon ratio are in favor of higher hydrogen production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-145

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. G. Chalk, J. F. Miller: Journal of Power Sources, vol. 159 (2006) No.1, p.73

Google Scholar

[2] C. Song: Journal of Fuel Chemistry and Technology, vol. 33 (2005) No.1, p.641

Google Scholar

[3] S. Wang, M. Fang, C. Yu, Z. Luo, K. Cen: China Particuology, vol. 3 (2005) No.1, p.136

Google Scholar

[4] S. Czernik, A. V. Bridgwater: Energy Fuels, vol. 18 (2004) No.2, p.590

Google Scholar

[5] D. Wang, D. Montané, E. Chornet: Applied Catalysis A: General, vol. 143 (1996) No.2, p.245

Google Scholar

[6] S. Czernik, R. Fench, C. Feik, and E. Chornet: Ind. Eng. Chem. Res, vol. 41 (2002) No.17, p.4209

Google Scholar

[7] Z. Guo, S. Wang, Y. Gu, G. Xu, X. Li, Z. Luo: Separation and Purification Technology, vol. 76(2010) No.1, p.52

Google Scholar

[8] X. Hu, G. Lu: Applied Catalysis B: Environmental, vol. 88 (2009) No.3-4, p.376

Google Scholar

[9] Q. Zhang, J. Chang, T. Wang, Y. Xu: Energy Conversion and Management, vol. 48 (2007) No.1, p.87

Google Scholar

[10] C. E.  Vagia, A. A. Lemonidou: Journal of Catalysis, vol. 269 (2010) No.1, p.388

Google Scholar

[11] W. C. Reynolds: The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the interactive Program STANJAN (Department of Mechanical Engineering, Stanford University, USA 1986)

Google Scholar

[12] K. Takanabe, K. Aika, K. Inazu, T. Baba, K. Seshan, L. Lefferts: Journal of Catalysis, vol. 243 (2006) No.2, p.263

DOI: 10.1016/j.jcat.2006.07.020

Google Scholar

[13] C. Rioche, S. Kulkarni, F. C. Meunier, J. P. Breen, R. Burch: Applied Catalysis B: Environmental, vol. 61 (2005) No.2

Google Scholar

[14] Z. Wang, T. Dong, L. Yuan, T. Kan, X. Zhu: Energy & Fuels, vol. 21 (2007) No.1, p.2421

Google Scholar