Effect of Tin Composition on Cu2ZnSnS4 Photovoltaic Absorbers

Article Preview

Abstract:

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-159

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ito,T. Nakazawa, Jpn.J. Appl. Phys. Vol. 27(1988), p. (2094).

Google Scholar

[2] J.S. Seol S.Y. Lee J.C. Lee H.D. Nam K.H. Kim, Sol. Energy Mater. Sol. Cells Vol. 75 (2003) p.155.

Google Scholar

[3] H. Katagiri, Thin Solid Films Vol. 480 (2005) p.426.

Google Scholar

[4] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express Vol. 1 (2008) p.041201.

DOI: 10.1143/apex.1.041201

Google Scholar

[5] Ingrid Repins, M. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, R. Noufi, Prog. in Photovolt.: Research and Applications, vol. 16, (2008) p.235.

DOI: 10.1002/pip.822

Google Scholar

[6] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J. Phys. Chem. Solids Vol. 66 (2005) p. (1978).

Google Scholar

[7] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells Vol. 65 (2001) p.141.

DOI: 10.1016/s0927-0248(00)00088-x

Google Scholar

[8] N. Nakayama, K. Ito, Appl. Surf. Sci. Vol. 92 (1996) p.171.

Google Scholar

[9] H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Sol. Energy Mater. Sol. Cells Vol. 93 (2009) p.996.

DOI: 10.1016/j.solmat.2008.11.045

Google Scholar

[10] R. Schurr, A. Hoelzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Koetschau, H. -W. Schock, Thin Solid Films Vol. 517 (2009) p.2465.

DOI: 10.1016/j.tsf.2008.11.019

Google Scholar

[11] K. Oishi, G. Saito, K. Ebina, M. Nagahashi, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films Vol. 517 (2008) p.1449.

DOI: 10.1016/j.tsf.2008.09.056

Google Scholar

[12] K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. Vol. 46 (2007) p.5780.

Google Scholar

[13] Z.H. Zhou, Y.Y. Wang, D. Xu, Y.F. Zhang, Sol. Energy Mater. Sol. Cells Vol. 94 (2010) p. (2042).

Google Scholar

[14] P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Thin Solid Films Vol. 517 (2009) p.2519.

Google Scholar

[15] P.M.P. Salomé, P.A. Fernandes, A.F. da Cunha, J. P Leitão, J. Malaquias, A. Weber, J. C González, M.I.N. da Silva, Sol. Energy Mater. Sol. Cells Vol. 94 (2010) p.2176.

DOI: 10.1016/j.solmat.2010.07.008

Google Scholar

[16] T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varicli, Thin Solid Films Vol. 516 (2008) p.2913.

DOI: 10.1016/j.tsf.2007.05.075

Google Scholar

[17] N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films Vol. 515 (2007) p.5949.

DOI: 10.1016/j.tsf.2006.12.144

Google Scholar