Ferroelectric Domain Patterns Writing in PbZr0.3Ti0.7O3 Thin Films Using a Biased Sweeping PFM Tip

Article Preview

Abstract:

(111) preferred orientated ferroelectric PbZr0.3Ti0.7O3 (PZT) thin films with grain size of 300-500 nm, and root-mean-square (RMS) roughness of 2.927 nm were prepared by using radio frequency magnetron sputtering process. Piezoresponse force microscopy (PFM) has been used to write complex ferroelectric domain patterns using a biased sweeping PFM tip. Subsequent imaging of switched domain patterns was performed. The stabilization of the written domain was investigated by inverse biased tip scanning. The results indicate that these films are suitable for submicron scale domain writing, and the resulted domain are affected by the condition of crystalline boundary. The written domain is superficial and can be easily erased by inverse tip-applied electric field

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Son, G. Lee and Y. -H. Shin: Appl. Phy. Lett. 94 (2009), p.162902.

Google Scholar

[2] Y. Kan, X.M. Lu, X.M. Wu and J.S. Zhu: Appl. Phy. Lett. 8 (2006), p.262907.

Google Scholar

[3] A. Haussmann, P. Milde, C. Erler and L.M. Eng: Nano Lett. 9 (2009), p.763.

Google Scholar

[4] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada and S. Streiffer: J. Appl. Phys. 100 (2006), p.051606.

DOI: 10.1063/1.2393042

Google Scholar

[5] S.V. Kalinin, A. N. Morozovska, L.Q. Chen and B. J. Rodriguez: Rep. Prog. Phys. 73 (2010), p.056502.

Google Scholar

[6] J.H. Ferris, D.B. Li, S.V. Kalinin and D.A. Bonnell: Appl. Phys. Lett. 84 (2004), p.774.

Google Scholar

[7] L.J. Klein, C. Dubourdieu, M.M. Frank, J. Hoffman, J.W. Reiner and C.H. Ahn: J. Vac. Sci. Technol. B 28 (2010), p. C5A20.

Google Scholar

[8] A. Gruverman and S.V. Kalinin: J. Mater. Sci. 41 (2006), p.107.

Google Scholar

[9] H.R. Zeng, H.F. Yu, X.G. Tang, R.Q. Chu, G.R. Li and Q.R. Yin: Mater. Sci. Eng. B 120 (2005), p.104.

Google Scholar

[10] N. Jaitanong, H.R. Zeng, G.R. Li, Q.R. Yin, W.C. Vittayakorn, R. Yimnirun and A. Chaipanich: Appl. Surf. Sci. 256 (2010), p.3245.

DOI: 10.1016/j.apsusc.2009.12.013

Google Scholar

[11] A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. Ganpule, V. Nagarajan and R. Ramesh: Appl. Phys. Lett. 80 (2002), p.1424.

DOI: 10.1063/1.1448653

Google Scholar

[12] H.R. Zeng, G.R. Li, Q.R. Yin and Z.K. Xu: Appl. Phys. A 76 (2003), p.401.

Google Scholar

[13] B.J. Rodriguez, S. Jesse S.V. Kalinin, J. Kim, S. Ducharme and V.M. Fridkin: Appl. Phys. Lett. 90 (2007), p.122904.

DOI: 10.1063/1.2715102

Google Scholar

[14] I. Stolichnov, E. Colla, A. Tagantsev, S.S.N. Bharadwaja, H. Seungbum, N. Setter, J.S. Cross and M. Tsukada: Appl. Phys. Lett. 80 (2002), p.1424.

DOI: 10.1063/1.1489478

Google Scholar

[15] I. Stolichnov, L. Malin, E. Colla, A.K. Tagantsev and N. Setter: Appl. Phys. Lett. 86 (2005), p.012902.

DOI: 10.1063/1.1845573

Google Scholar

[16] A. Gruverman, O. Auciello and H. Tokumoto: Annu. Rev. Mater. Sci. 28 (1998), p.101.

Google Scholar