Effect of Nb Doping on Electronic and Magnetic Properties of Heusler Alloy Ti2NiAl with Hg2CuTi-Type Structure

Article Preview

Abstract:

In this work, the electronic and magnetic properties of Nb-doped full-Huesler alloy Ti2NiAl with Hg2CuTi-type structure have been investigated by using first-principles calculations within the density function theory (DFT). Due to the Nb which has less valence electrons than Ni doping into Ni-site, the gap around the Fermi level of the compound Ti2Ni1-xNbxAl (0≤x≤1) is gradually narrowed, and destroyed completely as x≥0.5. With the increase of x, it has gone through the transition from the ferromagnetism to the non-magnetism, and then to the ferromagnetism finally. Further analyses of density of states reveal that the d-electronic rehybridization induced by Nb-doping and RKKY-type indirect interaction is directly responsible for the changes of half-metallicity and magnetism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1295-1298

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H. J. Buschow: Phys. Rev. Lett. 50 (1983), 2024.

Google Scholar

[2] H.Z. Luo, Z.Y. Zhu, L. Ma et. al: J. Phys. D: Appl. Phys. 40 (2007) 7121.

Google Scholar

[3] G.D. Liu, X.F. Dai, S.Y. Yu et. al: Phys. Rev. B 74 (2006) 054435.

Google Scholar

[4] L. Feng, C.C. Tang, S.J. Wang and W.C. He: J. Alloys Compd. 509 (2011), 5187.

Google Scholar

[5] H.Z. Luo, Z.Y. Zhu, L. Ma et. al: J. Phys. D: Appl. Phys. 41 (2008) 055010.

Google Scholar

[6] J. Kübler, G.H. Fecher and C. Felse: Phys. Rev. B 76 (2007), 024414.

Google Scholar

[7] H.C. Kandpal, G.H. Fecher and C. Felser: Phys. Rev. B 73 (2006), 094422.

Google Scholar

[8] S. Picozzi and A. Continenza and A.J. Freeman: Phys. Rev. B 69 (2004), 094423.

Google Scholar

[9] S.V. Karthik, A. Rajanikanth, Y.K. Takahashi, T. Ohkubo, K. Hono: Acta Materialia 55 (2007), 3867.

DOI: 10.1016/j.actamat.2007.03.003

Google Scholar

[10] K. Özdoğan, E. Şaşıoğlu, B. Aktaş and I. Galanakis: Phys. Rev. B 74 (2006), 172412.

Google Scholar

[11] R. Shan, H. Sukegawa, W.H. Wang, M. Kodzuka et. al: Phys. Rev. Lett 102 (2009), 246601.

Google Scholar

[12] G.D. Liu, X.F. Dai, H.Y. Liu et. al: Phys. Rev. B.77 (2008), 014424.

Google Scholar

[13] X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, X.R. Hu: arXiv:1110.5411v1.

Google Scholar

[14] J.P. Perdew, J.A. Chevary, S.H. Vosko et. al: Phys. Rev. B 46 (1992),6671.

Google Scholar

[15] D. Vanderbilt: Phys. Rev. B 41 (1990), 7892.

Google Scholar

[16] I. Galanakis, P.H. Dederichs and N. Papanikolaou: Phys. Rev. B 66 (2002), 174429.

Google Scholar

[17] X.Y. Wu, J. Zhang, H.K. Yuan, A.L. Kuang, and H. Chen: Phys. Status Solidi B 247 (2010), 945.

Google Scholar

[18] R.E. Watson, A.J. Freeman, and S. Koide: Phys. Rev. A 186 (1969), 625.

Google Scholar