Reduced Graphene Oxide Nanosheets Functionalized with Bile Salts as Support for Electrochemical Catalysts

Article Preview

Abstract:

Graphene nanosheets functionalized with bile salts (G-bile salts) are obtained through chemical reduction of exfoliated graphite oxide in the presence of deoxycholic acid sodium salt, taurodeoxycholic acid sodium salt, or cholic acid sodium salt. Due to the “facial amphiphilic” structure of bile salt molecules, the G-bile salt composites exhibit excellent dispersibility in water. In addition, G-bile salts decorated with palladium (Pd) nanoparticles (Pd-G-bile salts) are prepared via a facile co-reduction process. The use of the Pd-G-bile salt composites as electrochemical catalysts for formic acid oxidation reaction is demonstrated. Better utilization has been achieved for Pd catalysts dispersed on G-bile salts than those prepared without bile salts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1467-1477

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhu, J. Wang, T. Zhang, M. Liang, C. W. Lim, F. Ding and X. C. Zeng, Nano Lett. 10, 494 (2010).

Google Scholar

[2] E. Muñoz, J. Lu and B. I. Yakobson, Nano Lett. 10, 1652 (2010).

Google Scholar

[3] H. Y. Chiu, V. Perebeinos, Y. M. Lin and P. Avouris, Nano Lett. 10, 4634 (2010).

Google Scholar

[4] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

Google Scholar

[5] E. J. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo and I. Honma, Nano Lett. 8, 2277 (2008).

Google Scholar

[6] T. Kondo, K. I. Izumi, K. Watahiki, Y. Iwasaki, T. Suzuki and J. Nakamura, J. Phys. Chem. C 112, 15607 (2008).

Google Scholar

[7] J. Lu, I. Do, L. T. Drzal, R. M. Worden and I. Lee, ACS Nano 2, 1825 (2008).

Google Scholar

[8] A. Du, Z. Zhu and S. C. Smith, J. Am. Chem. Soc. 132, 2876 (2010).

Google Scholar

[9] V. López, R. S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora and K. Kern, Adv. Mater. 21, 4683 (2009).

DOI: 10.1002/adma.200901582

Google Scholar

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

DOI: 10.1126/science.1102896

Google Scholar

[11] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, Chem. Mater. 19, 4396 (2007).

DOI: 10.1021/cm0630800

Google Scholar

[12] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, W. Zhiming, I. T. McGovern, G. S. Duesberg and J. N. Coleman, J. Am. Chem. Soc. 131, 3611 (2009).

DOI: 10.1021/ja807449u

Google Scholar

[13] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong and K. P. Loh, Chem. Mater. 21, 2950 (2009).

Google Scholar

[14] R. Hao, W. Qian, L. Zhang and Y. Hou, Chem. Commun., 6576 (2008).

Google Scholar

[15] S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni and R. S. Ruoff, Nano Lett. 9, 1593 (2009).

Google Scholar

[16] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, Adv. Mater. 20, 4490 (2008).

Google Scholar

[17] D. Li, M. B. Müller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotech. 3, 101 (2008).

Google Scholar

[18] C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H. Tsai and L. J. Li, Chem. Mater. 21, 5674 (2009).

Google Scholar

[19] Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma and Y. Chen, Adv. Mater. 21, 1275 (2009).

Google Scholar

[20] X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu and Y. X. Li, Adv. Mater. 22, 1731 (2010).

Google Scholar

[21] S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006).

DOI: 10.1021/ja060680r

Google Scholar

[22] A. A. Green and M. C. Hersam, Nano Lett. 9, 4031 (2009).

Google Scholar

[23] J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, J. Am. Chem. Soc. 130, 16201 (2008).

Google Scholar

[24] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008).

Google Scholar

[25] D. Cai and M. Song, J. Mater. Chem. 20, 7906 (2010).

Google Scholar

[26] S. Z. Zu and B. H. Han, J. Phys. Chem. C 113, 13651 (2009).

Google Scholar

[27] . X. Qi, K. Y. Pu, X. Zhou, H. Li, B. Liu, F. Boey, W. Huang and H. Zhang, Small 6, 663 (2010).

Google Scholar

[28] Q. Yang, X. Pan, F. Huang and K. Li, J. Phys. Chem. C 114, 3811 (2010).

Google Scholar

[29] J. Liu, Y. Li, J. Li and Z. Deng, J. Mater. Chem. 20, 900 (2010).

Google Scholar

[30] L. Jiang, K. Wang, M. Deng, Y. Wang and J. Huang, Langmuir 24, 4600 (2008).

Google Scholar

[31] W. Wenseleers, I. L. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach and A. Bouwen, Adv. Funct. Mater. 14, 1105 (2004).

DOI: 10.1002/adfm.200400130

Google Scholar

[32] F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi and A. C. Ferrari, J. Phys. Chem. C 114, 17267 (2010).

DOI: 10.1021/jp1030174

Google Scholar

[33] R. K. Wang, W. C. Chen, D. K. Campos and K. J. Ziegler, J. Am. Chem. Soc. 130, 16330 (2008).

Google Scholar

[34] W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

Google Scholar

[35] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, Langmuir 25, 12030 (2009).

Google Scholar

[36] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen and R. S. Ruoff, J. Mater. Chem. 16, 155 (2006).

Google Scholar

[37] F. Li, Y. Bao, J. Chai, Q. Zhang, D. Han and N. Li, Langmuir 26, 12314 (2010).

Google Scholar

[38] L. Yang, Y. Xu, Y. Su, J. Wu, K. Zhao, J. Chen and M. Wang, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 62, 1209 (2005).

Google Scholar

[39] J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull and J. Huang, J. Am. Chem. Soc. 132, 8180 (2010).

Google Scholar

[40] L. Q. Xu, W. J. Yang, K. G. Neoh, E. T. Kang and G. D. Fu, Macromolecules 43, 8336 (2010).

Google Scholar

[41] L. J. Cote, R. Cruz-Silva and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009).

Google Scholar

[42] J. Ge, W. Xing, X. Xue, C. Liu, T. Lu and J. Liao, J. Phys. Chem. C 111, 17305 (2007).

Google Scholar

[43] W. Zhou and J. Y. Lee, J. Phys. Chem. C 112, 3789 (2008).

Google Scholar

[44] Y. Li, L. Tang and J. Li, Electrochem. Commun. 11, 846 (2009).

Google Scholar