Study on Present Situation and New Trends of the Electrodeposition of Nickel-Cobalt Alloy

Article Preview

Abstract:

Nickel-cobalt alloys have broad application prospect for their excellent properties (i.e. high microhardness, strength, abrasion, corrosion resistance and magnetic properties.etc). Present situation and new trends on mechanism of the anomalous codeposition and technology of electrodepostion of nickel-cobalt were studied. Effects of electrolysis parameters (e.g. concentration of co2+in the electrolyte, cathodic current density, pH value, temperature.etc) on the alloy composition, morphology and mechanical properties were analyzed. The formation of the monovalent intermediate (hydroxides or colloid) may cause the cobalt preferential deposition or the faster charge-transfer of Co2+ reduction compared to that of Ni2+ reduction is the main factor that causes the anomalous codeposition behavior of the nickel-cobalt alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

973-976

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhen-mi Tu, Theo. and tech. of electroplating alloy [A].China National Defe. Industry Press.(1995)

Google Scholar

[2] Ali Karpuza, Hakan Kockara, Mursel Alperb, et al. Applied Surface Sci.258 (2012) 4005-4010.

Google Scholar

[3] C. Lupia, A. Dell'Erab, M. Pasqualic et al. Surface &Coatings Technology (2011)205:5394-5399.

Google Scholar

[4] C.K. Chung, W.T. Chang, M.W.liao. Thin Solid Films 519(2011)2075-2078.

Google Scholar

[5] O.Ergeneman, K.M. Sivaraman, S.Pane et al. Electrochimica Acta 56(2011)1399-1408.

Google Scholar

[6] D.Gangasingh, J.B. Talbot. J. Electrochem. Soc. 138.3605(1991)

Google Scholar

[7] Y.Zhuang. E.J. Podlaha. Journal of the Electrochemical Society.147 (6)2231-2236(2000)

Google Scholar

[8] N.Zech, E.J. Podlaha, D.Landolt.Journal of the Electrochemical Society. 146(8)2892-2900(1999)

Google Scholar

[9] Jorge Vazquez-Arenas, Mark Pritzker. Electrochimica Acta 66(2012)139-150.

Google Scholar

[10] Gang Wu, et al. J. of Chem. Engin. of China Universities. Vol.19(2005)48-53.In Chinese.

Google Scholar

[11] Wolfgang E.G. Hansal, Barbara Tury, Martina H. Electrochimica Acta 52(2006)1145-1151.

Google Scholar

[12] A.H.Du, J.M. Long, H.Z. Pei et al. Electroforming & Finishing.27 (2008):15-17.In Chinese.

Google Scholar

[13] M.Srivastava, V.Ezhil Selvi V.K. William.et al. Surface & Coatings Tech.201(2006)3051- 3060.

DOI: 10.1016/j.surfcoat.2006.06.017

Google Scholar

[14] C.K. Chung, R.X. Zhou, W.T. Chang. Microsystem Technology (2008) 14:1279-1284.

Google Scholar

[15] D.F. Yang, H.Z.P., GuoL.Z. et.al. Electroplating & Pollut. Control.vol.30:5-7.(2010).In Chinese.

Google Scholar

[16] L.P. Wang Yan Gao, T. Xua, et al. Materials Chem. and Physics99 (2006)96-103.In Chinese.

Google Scholar

[17] G.D. Hibbard, K.T. Aust, U.Erb. Materials Sci. and Engin.A433 (2006)195-202

Google Scholar

[18] K.C. Zhou, Li Ma, Z.Y.Li. Trans. of Nonferrous Metals Society of China 2011(21):1052-1060.

Google Scholar

[19] Liangliang Tian, Jincheng Xu, Songtao Xiao. Applied Surface Science257 (2011)4689-4694.

Google Scholar