The Impact Toughness and Fracture Behavior of Ni-Containing Powder Metal Steels

Article Preview

Abstract:

The toughness of powder metal (PM) steel is always inferior due to the presence of pores. An alloying element is typically found to improve the tensile strength, while sacrificing toughness. These issues prohibit the development of high-strength PM steels with satisfactory toughness. To formulate high-strength PM steels with superior toughness, the effects of Cr and Mo on the impact toughness and fracture behaviors of Ni-containing PM steels were investigated. The results indicated that both 1.5wt% Cr and 1.5 wt% Mo additives can improve the microstructures and tensile strengths of Ni-containing PM steels. However, while 1.5 wt % Mo apparently impairs the toughness, 1.5 wt % Cr does not. The addition of 1.5 wt% Cr results in the formation of Ni-rich martensite, which is strong and tough, thereby improving the tensile strength by 150% without sacrificing toughness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

1594-1600

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. A. Spitzig, R. E. Semlser and O. Richmond: Acta Metall. Vol. 36 (1988), p.1201.

Google Scholar

[2] R. J. Bourcier, D. A. Koss, R.E. Smelser and O. Richmond: Acta Metall. Vol. 34 (1986), p.2443.

Google Scholar

[3] N. Chawla and X. Deng: Mater. Sci. Eng. A Vol. 390 (2005), p.98.

Google Scholar

[4] D. Shanmugasundaram and R. Chandramouli: Mater. Des. Vol. 30 (2009), p.3444.

Google Scholar

[5] S. St-laurent and F. Chagnon: Adv. Powder Metall. Part. Mater. Part. 5 (2002), p.121.

Google Scholar

[6] G. Straffelini, V. Fontanari and A. Molinari: Mater. Sci. Eng. A Vol. 248 (1998), p.153.

Google Scholar

[7] G. Straffelini, V. Fontanari and A. Molinari: Mater. Sci. Eng. A Vol. 272 (1999), p.389.

Google Scholar

[8] G. Straffelini, A. Molinari and H. Danninger: Mater. Sci. Eng. A Vol. 272 (1999), p.300.

Google Scholar

[9] N. Candela, F. Velasco and J. M. Torralba: Mater. Sci. Eng. A Vol. 259 (1999), p.98.

Google Scholar

[10] M. W. Wu, K. S. Hwang, H. S. Huang and K. S. Narasimhan: Metall. Mater. Trans. A Vol. 37 (2006), p.2559.

Google Scholar

[11] M. W. Wu and K. S. Hwang: Metall. Mater. Trans. A Vol. 37 (2006), p.3577.

Google Scholar

[12] M. W. Wu, K. S. Hwang and H. S. Huang: Metall. Mater. Trans. A Vol. 38 (2007), p.1598.

Google Scholar

[13] M. W. Wu and K. S. Hwang: Mater. Sci. Eng. A Vol. 527 (2010), p.5421.

Google Scholar

[14] J. R. Davis: Carbon and Alloy Steels (ASM International, 1996).

Google Scholar

[15] N. Saeidi and A. Ekrami: Mater. Sci. Eng. A Vol. 523 (2009), p.125.

Google Scholar

[16] M. W. Wu, L. C. Tsao, G. J. Shu and B. H. Lin: Mater. Sci. Eng. A Vol. 538 (2012), p.135.

Google Scholar

[17] A. Bergmark and L. Alzati: Fatigue Fract. Eng. Mater. Struct. Vol. 28 (2005), p.229.

Google Scholar