Study on Interface Structure and In Situ Formation Mechanism in Laser Surface Ceramic Process

Article Preview

Abstract:

Laser ceramic modification technology is an effective way to improve the surface performance of titanium alloy. This paper summarized the in situ formation mechanism of ceramic phases and the interface structure between ceramic phases and the matrix during the laser ceramic process on the surface of titanium alloy. The future research area was also indicated that theoretical study on composite ceramic coating preparation should be strengthened by combining the laser alloying and in situ formation technology on the surface of titanium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

1847-1851

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.T. Pei, J.H. Ouyang, T.Q. Lei. Materials review, 1995, (4): 60-66.in Chinese. (in Chinese)

Google Scholar

[2] R.X. Liu, T.Q. Lei, L.X. Guo. Materials Science and Technology, 2004, 12(5): 524-528. (in Chinese)

Google Scholar

[3] X.H. Fan, L. Geng. China surface engineering. 2006, 19(1): 28-32. (in Chinese)

Google Scholar

[4] S. Zhang, C.H. Zhang, W.T. Wu, M.C. Wang. Acta Metal Sinica, 2001, 37(3): 315-320. (in Chinese)

Google Scholar

[5] Y. S. Tian, C. Z. Chen, L. B. Chen, J. H. Liu, T. Q. Lei. Journal of Materials Science, 2005, 40(16): 4387-4390.

Google Scholar

[6] C. Gao, B. Xu. Surface Technology, 2008, 37(4):63-66. (in Chinese)

Google Scholar

[7] MOLIAN P A , HUALUN L. Wear, 1989, 130: 337-352.

Google Scholar

[8] L.L. Liu, R. L. Sun, W. Niu, Y.W. Lei. Journal of Tianjin Polytechnic University, 2007, 26(4): 60-62. (in Chinese)

Google Scholar

[9] W. Niu, R.L. Sun, Y.W. Lei. Heat treatment of Metals, 2008, 33(7): 50-52.(in Chinese)

Google Scholar

[10] Q.W. Meng, L. Geng, B.Y. Zhang. Surface & Coatings Technology, 2006, 200: 4923 – 4928.

Google Scholar

[11] Y. S. Tian, C. Z. Chen, D.Y. Wang, Z.L. Wang. Chinese Journal of Lasers, 2004, 31 (7): 879-882. (in Chinese)

Google Scholar

[12] Y.S. Tian, Q.Y. Zhang, D.Y. Wang. Journal of materials processing technology, 2009, 209: 2887–2891.

Google Scholar

[13] Y.S. Tian, C.Z. Chen, L.B. Chen, L.X. Chen. Applied Surface Science, 2006, 253: 1494-1499.

Google Scholar

[14] Y.S. Tian, C.Z. Chen, L.X. Chen, Q.H. Huo. Materials Letters, 2006, 60: 109-113.

Google Scholar

[15] Y. S. Tian, C. Z. Chen, D.Y. Wang, Y. Xu, T.Q. Lei. Laser Technology. 2005, 29(2): 113-115. (in Chinese)

Google Scholar

[16] Y.S. Tian, Q.Y. Zhang, D.Y. Wang, T.Q. Lei. Applied Laser. 2005, 25(2): 109-112. (in Chinese)

Google Scholar

[17] R.L. Sun, C.Y. Wang. Journal of Tianjin University. 2007, 40(11): 1291-1294. (in Chinese)

Google Scholar

[18] Y.L. Li, J.N. Wei, M.L. Ma. Hot Working Technology, 2007, 36(11): 42-44. (in Chinese)

Google Scholar

[19] M. Zheng, D. Fan, X.K. Li, J.B. Zhang, Q.B. Liu. Rare Metal Materials and Engineering, 2009, 38(11): 2004-2007. (in Chinese)

Google Scholar

[20] M.S. Selamat, L.M. Watson, T.N. Baker. Journal of Materials Processing Technology, 2003, 142: 725-737.

Google Scholar