[1]
Lee, S. H. and Chen, W., 2008, "A comparative study of uncertainty propagation methods for black-box type functions," Struct. Multidiscip. Optimiz, 37(3), 239-253.
Google Scholar
[2]
Ghanem, R., Spanos, P., 1991. "Stochastic finite elements: a spectral approach," Springer-Verlag.
Google Scholar
[3]
Isukapalli, S.S., Roy, A. and Georgopoulos, P.G., 1998, "Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems," Risk Anal, 18(3), 351-363.
DOI: 10.1111/j.1539-6924.1998.tb01301.x
Google Scholar
[4]
Isukapalli, S.S., 1999, "Uncertainty analysis of transport-transformation models," PhD thesis, The State University of New Jersey.
Google Scholar
[5]
Isukapalli, S.S., Roy, A. and Georgopoulos, P.G., 2000, "Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems," Risk Anal, 20(5), 591-602.
DOI: 10.1111/0272-4332.205054
Google Scholar
[6]
Kim, Y.K., Lee, G.H., Hong, J.P., Hur, J., et al., 2004, "Prediction of torque characteristic on barrier-type SRM using stochastic response surface methodology combined with moving least square," IEEE Transactions on Magnetics, 40(2), 738-741.
DOI: 10.1109/tmag.2004.825453
Google Scholar
[7]
Wang, H. and Kim, N.H., 2006, "Robust design using stochastic response surface and sensitivities," 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 6 - 8 September 2006, Portsmouth, Virginia. No. AIAA 2006-7015
DOI: 10.2514/6.2006-7015
Google Scholar
[8]
Hosder, S., Walters, R.W. and Balch, M., 2007, "Efficient Sampling for Non-Intrusive Polynomial Chaos," 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 15th 23 - 26 April 2007, Honolulu, Hawaii.
DOI: 10.2514/6.2007-1939
Google Scholar
[9]
Wei, D.L., Cui, Z.S., and Chen, J., 2008, "Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules," Comput. Struct, 86(23-24), 2102-2108.
DOI: 10.1016/j.compstruc.2008.07.001
Google Scholar
[10]
Choi, S., Grandhi, R. and Canfield, R., 2007. Reliability-based structural design, Springer.
Google Scholar
[11]
Noh, Y., Choi, K. K. and Du, L., 2009, "Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula," Struct. Multidiscip. Optimiz, 38(1):1-16.
DOI: 10.1007/s00158-008-0277-9
Google Scholar
[12]
Tatang, M.A., Pan, W., Prinn, R.G. and McRae, G.J., 1997, "An efficient method for parametric uncertainty analysis of numerical geophysical models," J Geophys Res, 102(D18), 21925-21932.
DOI: 10.1029/97jd01654
Google Scholar
[13]
Stroud, A.H., 1971, "Approximate calculation of multiple integrals," Englewood Cliffs, NJ: Prentice-Hall, 1971.
Google Scholar
[14]
Jin, R., Chen, W., and Sudjianto, A., 2005, "An efficient algorithm for constructing optimal design of computer experiments," Stat Journal of Statistical Planning and Inference, 134(1), 268-287.
DOI: 10.1016/j.jspi.2004.02.014
Google Scholar
[15]
Creveling, C.M., 1997, "Tolerance design: a handbook for developing optimal specifications," Addison-Wesley, Reading, MA.
Google Scholar
[16]
Kokkolaras, M., Mourelatos, Z.P. and Papalambros, P.Y., 2006, "Design optimization of hierarchically decomposed multilevel system under uncertainty," J Mech Design, 128(2), 503-508.
DOI: 10.1115/1.2168470
Google Scholar
[17]
Xiong, F., Chen, W., Xiong, Y. and Yang, S., 2011, "Weighted stochastic response surface method considering sample weights", Struct. Multidiscip. Optimiz, 423(6), 837-849.
DOI: 10.1007/s00158-011-0621-3
Google Scholar