[1]
Ying K. L, Hsieh T. E, Hsieh Y. F. Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes. [J]. Ceram Int, 2009; 35: 1165–1171.
DOI: 10.1016/j.ceramint.2008.05.014
Google Scholar
[2]
Zhang M. L, Ding G. L, Jing X. Y, Hou X. Q, Preparation, modification and application of nanoscal SiO2[J]. Appl. Surf. Tech, 2004; 31: 64–66.
Google Scholar
[3]
Pomogailo A. D., Synthesis and intercalation chemistry of hybrid organoinorganic nanocomposites. [J] Poly. S. Seri. 2006; C48: 85–111.
Google Scholar
[4]
Zhang Q. L, Du L. C, Weng Y. X, Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes. [J] Phys. Chem, 2004; B108: 15077–15083.
DOI: 10.1021/jp037584m.s001
Google Scholar
[5]
Faouzi N, Naceur A, Yves C. L, Selection of dispersants for the dispersion of carbon black in organic medium. [J] Prog. Org. Coat, 2006; 55: 303–310.
Google Scholar
[6]
Tai Y. L, Qian J. S, Zhang, Y. C, Huang J. D. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). [J] Chem Eng J, 2008; 141: 354–361.
DOI: 10.1016/j.cej.2008.03.012
Google Scholar
[7]
Sabzi M, Mirabedini S. M, Zohuriaan-Mehr J, Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating.[J] Prog Org Coat, 2009; 65: 222-228.
DOI: 10.1016/j.porgcoat.2008.11.006
Google Scholar
[8]
He G., Hua J, Wei S. C, Li J. H, Liang X. H, Luo E. Surface modification of titanium by nano-TiO2/HA bioceramic coating. [J] Appl Surf Sci, 2008; 255: 442–445.
DOI: 10.1016/j.apsusc.2008.06.088
Google Scholar
[9]
Xia R, Li M. H, Zhang Y. C. Synthesis of tercopolymer BA-MMAVTES and surface modification of nano-size Si3N4 with this macromolecular coupling agent. [J] J. Appl. Polym. Sci. 2008; 107: 1100-1107.
DOI: 10.1002/app.27175
Google Scholar
[10]
Li X. G, He Y. Q, Mark T. Swihart, Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. [J] Langmuir, 2004; 20: 4720-4727.
DOI: 10.1021/la036219j
Google Scholar
[11]
Hua S. F, Mark T. S, Eli R. S, Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. [J] Langmuir, 2005; 21: 6054-6062.
DOI: 10.1021/la0509394
Google Scholar
[12]
Zhang. M, Wang X. B, Fu. X. S, Xia Y. Q. Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin. [J] Tribol Int, 2009; 42: 1029–1039.
DOI: 10.1016/j.triboint.2009.02.012
Google Scholar
[13]
Xu F. J, Cai Q. J, Kang E.T, Neoh K.G. Covalent Graft polymerization and block copolymerizaion initiated by the chlorinated SiO2 (SiO2-Cl) moieties of glass and oriented single crystal silicon surfaces. [J] Macromolecules, 2005; 38: 1051-1054.
DOI: 10.1021/ma0477605
Google Scholar
[14]
Guo Q. B, Rong M. Z, Jia G. L, Kin T. L, Zhang M. Q. Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid Composites. [J] Wear, 2009; 266:658-665.
DOI: 10.1016/j.wear.2008.08.005
Google Scholar
[15]
Jee A. Y, Lee M. Y. Surface functionalization and physicochemical characterization of diamond nanoparticles. [J] Curr Appl Phys, 2009; 9:e144–e147.
DOI: 10.1016/j.cap.2008.12.045
Google Scholar