The Electrochemical Behavior of Surface Modified Spinel LiMn2O4

Article Preview

Abstract:

Spinel LiMn2O4 is treated on its surface with CoO1+x/ZrO2 in this paper. Metal oxide-coated spinel LiMn2O4 was investigated with respect to electrochemical characteristics. The metal oxide coating process was carried out by using the solution method. CoO1+x/ZrO2-coated spinel LiMn2O4 exhibited stable cyclic performance in the range from 3.0 to 4.4V, and it has less electrochemical impedance, polarization and capacity loss. The cell composed of the CoO1+x/ZrO2-coated spinel LiMn2O4 can be discharged at a large current density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

269-275

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ohuzuka, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 137 (1990)760.

Google Scholar

[2] W.J. Macklin, R.J. Neat, R.J. Powell, J. Power Sources 34 (1991) 39.

Google Scholar

[3] V. Manev, A. Momchilov, A. Nassalevska, A. Kozawa, J. Power Sources 41 (1993) 305.

DOI: 10.1016/0378-7753(93)80048-t

Google Scholar

[4] B. Banov, Y. Todorov, A. Trifonova, A. Momchilov, V. Manev, J.Power Sources 68 (1997) 578.

DOI: 10.1016/s0378-7753(97)02647-5

Google Scholar

[5] M. Wohlfahrt-Mehrens, A. Butz, R. Oesten, G. Arnold, R.P. Hemmer R.A. Huggins, J. Power Sources 68 (1997) 582.

DOI: 10.1016/s0378-7753(97)02624-4

Google Scholar

[6] R. Stoyanova, E. Zhecheva, L. Zarkova, Solid State Ionics 73 (1994)233.

Google Scholar

[7] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc.143 (1996) 1607.

Google Scholar

[8] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68(1997) 604.

Google Scholar

[9] C. Sigala, A. Verbaere, J.L. Mansot, D. Guyomard, Y. Piffard, T.Tournoux, J. Solid State Chem. 132 (1997) 372.

DOI: 10.1006/jssc.1997.7476

Google Scholar

[10] L. Hernan, J. Morales, L. Sanchez, J. Santos, Solid State Ionics 118(1999) 179.

Google Scholar

[11] G.G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, J.M. Tarascon, SolidState Ionics 104 (1997) 13.

DOI: 10.1016/s0167-2738(97)00407-4

Google Scholar

[12] J. Cho, Y.J. Kim, B. Park, Chem. Mater. 12 (2000) 3788.

Google Scholar

[13] E. Endo, T. Yasuda, A. Kita, K. Yamaura, K. Sekai, J. Electrochem.Soc. 147 (2000) 1291.

Google Scholar

[14] H.J. Kweon, S.J. Kim, D.G. Park, J. Power Sources 88 (2000) 255.

Google Scholar

[15] H.J. Kweon, D.G. Park, Electrochem. Solid-State Lett. 3 (2000) 128.

Google Scholar

[16] J. Cho, Y.J. Kim, T.J. Kim, B. Park, Chem. Mater. 13 (2001) 18.

Google Scholar

[17] Xin-Cun Tang, Xia-Wei Song, Pei-Zhi Shen, Dian-Zeng Jia, Electrochimica Acta 50(2005)5581-5587

Google Scholar

[18] Xin-Cun Tang, Chun-Yue Pan, Li-Ping He, Li-Qing Li, Zong-Zhang Chen, Electrochimica Acta 49(2004)3113-3119

Google Scholar

[19] J.-S. Kim, C. S. Johnson, J. T. Vaughey, S. A. Hackney, K. A. Walz, W. A. Zeltner, M. A. Anderson, and M. M. Thackeray, J. Electrochem.So., 151(10) A1755-A1761(2004)

DOI: 10.1149/1.1793713

Google Scholar

[20] 21. P. Charpin, M. Lance, M. Nierlich, J. Vigner, and J. Lambard, Acta Crystallogr.,Sect. C: Cryst. Struct. Commun., C44, 1698(1988).

DOI: 10.1107/s0108270188005797

Google Scholar

[21] H. Sadamura, K. Yamashita, N. Nagai, J. Appl. Phys. 73(1933) 6731.

Google Scholar