[1]
J.P. Boyd, G.Y. Chen, Five regimes of the quasi-cnoidal steadily translating waves of the rotation-modified Korteweg-de Vries (Ostrovsky) equation. Wave Motion, 35 (2002), 141-155.
DOI: 10.1016/s0165-2125(01)00097-x
Google Scholar
[2]
V.M. Galkin, Y.A. Stepanyants, On the existence of stationary solitary waves in a rotating °uid. Prikl Matamat i Mekhanika, 55 (1991), 1051- 1055 (in Russian); (English translation: J Appl Maths Mechs, 55 (1991), 939-943).
DOI: 10.1016/0021-8928(91)90148-n
Google Scholar
[3]
R.H.J. Grimshaw, Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation, Eur J Mech B/Fluids, 18 (1999), 535-543
DOI: 10.1016/s0997-7546(99)80048-x
Google Scholar
[4]
S.P. Nikitenkova, Y.A. Stepanyants, L.M. Chikhladze, Solutions of the modified Ostrovskii equation with cubic non-linearity, Prikl Matamat I Mekhanika 64 (2000), 276-284 (in Russian); (English translation: J Appl Maths Mechs 64 (2000), 267-274).
DOI: 10.1016/s0021-8928(00)00048-4
Google Scholar
[5]
C. Ramirez, D. Renouard, Y.A. Stepanyants, Propagation of cylindrical waves in a rotating fluid, Fluid Dyn Res, 30 (2002), 169-196.
DOI: 10.1016/s0169-5983(02)00040-0
Google Scholar
[6]
Singh. Jitendra, Praveen Kumar Gupta and K.N. Rai, Solution of fractional bioheat equations by finite difference method and HPM, Mathematical and Computer Modelling, 54 (2011), 2316-2325.
DOI: 10.1016/j.mcm.2011.05.040
Google Scholar
[7]
S.V. Muzylev, Nonlinear equatorial waves in the ocean, Digest of Reports 2nd All-Union Congress of oceanographers, Sebastopol, USSR, 2 (1982), 26-27 (in Russian).
Google Scholar
[8]
Yu-Chao Tang, Ji-Gen Peng and Li-Wei Liu, Strong convergence of shrinking projection methods for a family of Pseudocontractive mappings in Hilbert spaces(2011), doi:10.1016 /j.mcm.2011. 07.038.
DOI: 10.1016/j.mcm.2011.07.038
Google Scholar
[9]
Y.A. Stepanyants, On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons, Chaos, Solitons and Fractals, 28 (2006), 193-204.
DOI: 10.1016/j.chaos.2005.05.020
Google Scholar
[10]
V.O. Vakhnenko, High-frequency soliton-like waves in a relaxing medium, J Math Phys 40 (1999), 2011-2020.
DOI: 10.1063/1.532847
Google Scholar
[11]
S.K. Liu, S.D. Liu, Nonlinear Equat ions in Physics, Beijing: Peking University Press, 2000.
Google Scholar
[12]
G.T. Liu, A New Auxiliary Elliptic Equation for Solving Nonlinear Evolution Equations, J. Inner. M. Norm. Univer., 34 (2005), 383-389.
Google Scholar
[13]
W. Malfliet, The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math.,164 (2004), 529-541.
DOI: 10.1016/s0377-0427(03)00645-9
Google Scholar