Deposition of Nano Fiber ZnO and Zn1-xCdxO Thin Films by a Simple Spray Pyrolysis and Characterizations for Optoelectronic Applications

Article Preview

Abstract:

ZnO and Zn1-xCdxO thin films have been deposited onto glass substrate using spray pyrolysis at 200°C. Cadmium-zinc alloy thin films have been prepared by taking different concentrations of cadmium (Cd). The elemental analysis and the surface morphology of the films were carried by the energy dispersive X-ray (EDX) and scanning electron microscopy (SEM). The EDX data show that the films are highly stoichiometric. The SEM images show that the film changes from nano fiber to grain with the increase of Cd concentrations. The X-ray diffraction pattern shows that the films are polycrystalline in nature. The crystal structure of the films changes from hexagonal-ZnO to cubic-CdO depending on the concentration of Zn and Cd in the Zn1-xCdxO films. The optical properties of these films were studied by UV-VIS spectroscopy. The optical band gap of the films was changed from 3.2 to 2.4 with the variation of cadmium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-104

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Yasemin, C. Mujdat, I., Saliha, and A., Aytunc, J. Phys. D: Appl. Phys. 42 (2009), p.065421.

Google Scholar

[2] R. A. Ismail, and O. A., Abdulrazaq, Sol. Energy Matter. Sol. Cells, 91 (2007), p.903.

Google Scholar

[3] R. S. Mane, H. M. Pathan, C. D. Lokhande, and S. H. Han, Sol. Energy 80 (2006), p.185.

Google Scholar

[4] O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales-Acevedo, and G. Contreras-Puente, Thin Solid Films, 361-362 (2000), p.53.

DOI: 10.1016/s0040-6090(99)01061-5

Google Scholar

[5] R. B. Waghulade, P. P. Patil, and R. Pasricha, Talanta, 72 (2007), p.594.

Google Scholar

[6] E. Martin, M. Yan, M. Lane, J. Ireland, C. Kannewurf, and R. H. Chang, Thin Solid Films, 461 (2004), p.309.

DOI: 10.1016/j.tsf.2004.01.103

Google Scholar

[7] Y. -S. Choi, C. -G. Lee and S.M. Cho. Thin Solid Films 289 (1996), p.153.

Google Scholar

[8] M. Tortosa, M. Mollar, and B. Mari, J. Cryst. Growth, 304 (2007), p.97.

Google Scholar

[9] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schäfer, and F. Henneberger, Appl. Phys. Lett. 89, (2006), p.201907.

DOI: 10.1063/1.2388250

Google Scholar

[10] G. Torres-Delgado, C.I. Zúñiga-Romero, O. Jimenez-Sandoval, R. Castanedo-Perez, B. Chao and S. Jimenez-Sandoval, Adv Funct Mater. 12 (2002), p.129.

DOI: 10.1002/1616-3028(20020201)12:2<129::aid-adfm129>3.0.co;2-v

Google Scholar

[11] H., Tablet-Derraz, N., Benramdane, D., Nacer, A., Bouzidi, and M., Medles, Sol. Energy Mater. Sol. Cells 73 (2002), p.249.

DOI: 10.1016/s0927-0248(01)00134-9

Google Scholar

[12] J., Zúñiga-Péreza, and V., Muñoz-Sanjosé, Journal of Applied Physics, 99 (2006), p.023514.

Google Scholar

[13] S., Guillermo, A., Arturo Morales, Osvaldo Vigil, Lidice Vaillant, Fransisco Cruz, Gerardo Contreras-Puente, Thin Solid films, 373 (2000), p.235.

DOI: 10.1016/s0040-6090(00)01142-1

Google Scholar