Study of Iodine Influence in Synthesizing ZnO Nanoparticles via Precipitation of Zn – Ethanol Reaction

Article Preview

Abstract:

The morphology and physical properties of ZnO nanoparticles are greatly influenced by the way it is synthesized. In this work, we study the influence of iodine ion in Zn- Ethanol reaction as this ion is believes to have the ability to control the nucleation and growth of ZnO particles [1]. The morphology of ZnO particles in the presence of iodine shows nearly spherical in shape (size ~ 110 nm) whereas ZnO particles without the presence of iodine exhibit hollow microsphere with feeler like structure growth outward of the sphere . Photoluminescence (PL) spectra shows a broad UV emission peak for both of the sample where sample with the absence of iodine possess lower intensity of UV emission centered at 380 nm compared to samples with iodine which demonstrates stronger intensity at 390 nm despite of having very weak visible secondary emission peak at 530 nm. Iodine contribution to ZnO morphology, structural and optical properties was discussed where iodine has shown to have more controlled on the formation and nucleation of ZnO particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-80

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Wang, Q. Li, B. Mao, E. Wang and C. Tian: Mater. Lett. Vol 62 (2008) p.1339 – 1341.

Google Scholar

[2] J. Li, D. Guo, X. Wang, H. Wang , H. Jiang, B. Chen : Nanoscale Res Lett (2010) Vol 5 p.1063–1071.

Google Scholar

[3] Z. W. Pan, Z. R. Dai, Z. L Wang: Science Vol 291 (2001) p.1947-(1949).

Google Scholar

[4] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma: Appl. Phys. Lett., Vol 84, (2004). p.4098–4100.

DOI: 10.1063/1.1753061

Google Scholar

[5] S. Yuan Chu, W. Water and J. Tsang Liaw: J. Eur. Ceram. Soc. Vol 23 (2003) pp.1593-1598.

Google Scholar

[6] S. C Zhang and X. G Li: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol 226 (2003) p.35–44.

Google Scholar

[7] J.E. Rodr´ıguez-Paéz, A.C. Caballero, M. Villegas, C. Moure, P. Durán, J.F. Fernández: J. Eur. Ceram. Soc. Vol 21 (2001) p.925.

Google Scholar

[8] M. Ristic, S. Music, M. Ivanda, and S. Popovic: J. Alloy and Comp. Vol 397 (2005) p. L1-L4.

Google Scholar

[9] R. S. Yadav, P. Mishra and A. C. Pandey : Ultrasonics Sonochemistry Vol. 15 (2008) p.863–868.

Google Scholar

[10] C. Lu, Y. Lai and R. B. Kale: J of Alloy and Comp. Vol 477, (2009) pp.523-528.

Google Scholar

[11] Y. Zhao and L. Jiang: Adv. Mater. Vol. 21 (2009) pp.1-18.

Google Scholar

[12] Z. Hu, G. Oskam, R. L. Penn, N. Pesika, and P. C. Searson: J. Phys. Chem. B, Vol 107, (2003) pp.3124-3130.

Google Scholar

[13] J. H Hildebrand, H.A. Benesi and L.M. Mower: Vol 72 (1950) pp.1017-1020.

Google Scholar

[14] Z. Liu, C. Liu, J. Ya and Lei E: Solid State Sciences Vol 12 (2010) p.111–114.

Google Scholar

[15] Y. C Kong, D. P Yu, B. Zhang,W. Fang and S. Q Feng: Appl. Phys. Lett. Vol 78 (2001) p.407.

Google Scholar

[16] K. Vanheusden, C.H. Seager, W. L Warren, D.R. Tallant, J. Caruso, M.J.H. Smith and T. T . Kodas : J. of Luminescence, Vol 75 (1997) pp.11-16.

DOI: 10.1016/s0022-2313(96)00096-8

Google Scholar