Growth of ZnO Nanostructures at Different Reactant Concentrations for Inverted Organic Solar Cell

Article Preview

Abstract:

The effects of reactant concentration on the growth of ZnO nanostructures and the photovoltaic performance of inverted organic solar cells based on a blend of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor and (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor with a structure of FTO/ZnO nanostructures/MEHPPV:PCBM/Ag utilizing ZnO nanostructures as electron collecting layer and silver as a hole collecting electrode were investigated. The ZnO preparation consisted of ZnO nanoparticles seed layer coating and followed by ZnO nanostructures growth in equimolar aqueous solution of zinc nitrate hexahydrate (0.02-0.08 M) and hexamethylenetetramine (0.02-0.08 M). ZnO nanorods having diameter of 50-70 nm and with length up to 120 nm were obtained at reactant concentration of 0.04 M. The ZnO nanorods started to merge with each other and formed irregular nanostructures vertically on the substrates at higher reactant concentrations of 0.06 M and 0.08 M. The solar cell with ZnO nanorods prepared at reactant concentration of 0.04 M provided the largest interface area between polymer active layer and ZnO, resulting in the highest power conversion efficiency of 0.053 % with short circuit current density of 0.43 mA/cm2, open circuit voltage of 0.42 V and fill factor of 29 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-75

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P. Yang: Nat. Mater. Vol. 4 (2005), p.455.

Google Scholar

[2] C. Lévy-Clément, R. Tena-Zaera, M.A. Ryan, A. Katty and G. Hodes: Adv. Mater. Vol. 17 (2005), p.1512.

DOI: 10.1002/adma.200401848

Google Scholar

[3] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[4] J.J. Wu and S.C. Liu: Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[5] R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson and J.A. Switzer: Chem. Mater. Vol. 13 (2001), p.508.

Google Scholar

[6] L. Vayssieres: Adv. Mater. Vol. 15 (2003), p.464.

Google Scholar

[7] M. Guo, P. Diao and S. Cai: J. Solid State Chem. Vol. 178 (2005), p.1864.

Google Scholar

[8] Z. Chen and L. Gao: J. Cryst. Growth Vol. 293 (2006), p.522.

Google Scholar

[9] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park and A. Schulte: Physica B Vol. 403 (2008), p.3713.

DOI: 10.1016/j.physb.2008.06.020

Google Scholar

[10] J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang and M. Gao: J. Alloys Compd. Vol. 450 (2008), p.521.

Google Scholar

[11] X. Zhao, J.Y. Lee, C.R. Kim, J. Heo, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, W.G. Jung, C.S. Son, B.C. Shin, W.J. Lee, S.T. Tan, J. Zhao and X. Sun: Physica E Vol. 41 (2009), p.1423.

DOI: 10.1016/j.physe.2009.04.012

Google Scholar

[12] D.C. Olson, S.E. Shaheen, R.T. Collins and D.S. Ginley: J. Phys. Chem. C Vol. 111 (2007), p.16670.

Google Scholar

[13] Y. Hames, Z. Alpaslan, A. Kösemen, S.E. San and Y. Yerli: Solar Energy Vol. 84 (2010), p.426.

DOI: 10.1016/j.solener.2009.12.013

Google Scholar

[14] K. Takanezawa, K. Tajima and K. Hashimoto: Appl. Phys. Lett. Vol. 93 (2008), p.063308.

Google Scholar

[15] K.H. Lee, B. Kumar, H.J. Park and S.W. Kim: Nanoscale Res. Lett. (2010), in press.

Google Scholar