Synthesis and Characterization of ZnO, CuO and CuO/ZnO Nanostructures by a Novel Sol-Gel Route under Ultrasonic Conditions

Article Preview

Abstract:

Great interests in metallic oxides have emerged because of the possibility to modify the properties of these materials for different applications such as catalysis or sensors. In this work, CuO, ZnO and CuO-ZnO nanoparticles were prepared by a novel sol-gel route under ultrasonic condition using triethanolamine as an emulsifying surfactant. Fine powders were obtained when the pH of the sols were increased to 13 using NaOH. Particle sizes of the produced oxide materials were in the range of 3-4 nm, 40-50 x 100-150 nm (diameter x length) and 100-200 nm for CuO, ZnO and CuO-ZnO, respectively. The molar ratio of triethanolamine to metal nitrate precursors was set at 2:3. TEM micrographs of these particles were obtained to elucidate the morphology of the nanoparticles. Experimental results show that the band gap energies (Eg) for CuO, ZnO and CuO-ZnO were found to be 2.71, 3.35 and 2.82 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-70

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.S. Dandeneau, Y.H. Jeon, C.T. Shelton, T.K. Plant, D.P. Cann and B.J. Gibbons, J. Thin Solid Film., 517, 4448 (2008).

DOI: 10.1016/j.tsf.2009.01.054

Google Scholar

[2] M. Vafaee and M.S. Ghamsari, J. Materials Lett., 61, 3265 (2007).

Google Scholar

[3] Wiley, in: Synthesis, Properties, and Applications of Oxide Nanomaterials, Vol. 1, p.1, J. A. Rodriguez and M. Fernandez-Garcia, Ed. (John Wiley & sons, Canada, 2007).

Google Scholar

[4] Z. Hu, G. Oskam, R.L. Penn, N. Pesika and P.C. Searson., J. Phys. Chem. B., 107 (2003).

Google Scholar

[5] G. Oskam, J. Sol–Gel Sci. Technol., 37, 161 (2006).

Google Scholar

[6] R.V. Kumar, Y. Mastai and A. Gedaken., J. Chem Mater., 12, 3892 (2000).

Google Scholar

[7] A.Y. Baranchikov, V.K. Ivanov and Y.D. Tretyakov., Russian Chem. Rev., 76, 133 (2007).

Google Scholar

[8] K.S. Suslick, S.B. Choe, A.A. Cichowlas and M.W. Grinstaff., Nature., 353, 414 (1991).

Google Scholar

[9] T. Hyeon, M. Fang and K.S. Suslick., J. Am. Chem. Soc., 118, 5492 (1996).

Google Scholar

[10] X. Cao, Y. Koltypin, G. Katabi, I. Felner and A. Gedanken., J. Mater. Res., 12, 402 (1997).

Google Scholar

[11] W. Shlomit, R. Prozorov, Y. Cohen, D. Aurbach, S. Margel and A. Gedanken., J. Mater. Res., 13, 211 (1998).

Google Scholar

[12] R.V. Kumar, Y. Diamant and A. Gedanken., J. Chem Mater., 12, 2301 (2000).

Google Scholar

[13] Wiley, Zinc Oxide: Fundamental, Materials and Device Technology, Vol. 1, p.59, H. Morkoc and U. Ozgur, Ed. (Wiley-VCH Publications, Weinheim Germany 2009).

Google Scholar

[14] K. Sanfra, C.K. Sarkar and M.K. Mukherjee., Thin Solid Films., 213, 226 (1992).

Google Scholar

[15] G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh and K.A. Gray., J. Phys. Chem. C., 112, 19040 (2008).

Google Scholar

[16] U. Pal and P. Santiago., J. Phys. Chem. B., 109, 15317 (2005).

Google Scholar

[17] S.I. Nikitenko, Y. Koltypin, Y. Mastai, M. Koltypin and A. Gedanken., J. Mater. Chem., 12, 1450 (2002).

Google Scholar

[18] T.P. Chou, Q. Zhang, G.E. Fryxell and G. Cao., Cells Adv. Mater. 19, 2588 (2007).

Google Scholar

[19] A.A. Khassin, V. V. Pelipenko, T.P. Minyukova, V.I. Zaikovskii, D.I. Kochubey and T.M. Yurieva., Catal. Today., 112, 143 (2006).

DOI: 10.1016/j.cattod.2005.11.047

Google Scholar

[20] H. Okamura, J. Naitoh, T. Nanba, M. Matoba, M. Nishioka, S. Anzai, I. Shimoyama, K. Fukui, H. Miura, H. Nakagawa, K. Nakagawa and T. Kinoshita., Solid State Commun., 112, 91 (1999).

DOI: 10.1016/s0038-1098(99)00277-x

Google Scholar

[21] M.N. Kamalasanan and S. Chandra., Thin Solid Films., 288, 112 (1996).

Google Scholar

[22] C.H. Hung and W.T. Whang, Mater. Chem. Phys., 82, 705 (2003).

Google Scholar