Observer-Based H Control of T-S Fuzzy Model

Article Preview

Abstract:

An observer-based H control condition is proposed for T-S fuzzy model. The observer and controller are capable of disturbance-rejection. The fuzzy version of bounded real lemma (BRL) is adopted. Output H controller and observer are designed by solving a set of bilinear matrix inequalities. The condition is shown to be less conservative than some existed results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

1008-1013

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, (1995).

Google Scholar

[2] K. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis. Wiley Inc, New York, (2001).

Google Scholar

[3] K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Sets and System, vol. 45, pp.135-156, (1992).

DOI: 10.1016/0165-0114(92)90113-i

Google Scholar

[4] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy systems, vol. 14, pp.676-697, (2006).

DOI: 10.1109/tfuzz.2006.883415

Google Scholar

[5] X. D. Liu, Q. L. Zhang, H∞-control for T-S fuzzy systems based on the LMI, Control and Decision, vol. 17, pp.923-927, (2002).

Google Scholar

[6] K. R. Lee, E. T. Jeung, and H. B. Park, Robust fuzzy H∞ control of uncertain nonlinear systems via state feedback: an LMI approach, Fuzzy Sets and Systems, Vol. 120, pp.123-134, (2001).

DOI: 10.1016/s0165-0114(99)00078-0

Google Scholar

[7] X. D. Liu, Q. L. Zhang, New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI , Automatica, Vol. 39, pp.1571-1582, (2003).

DOI: 10.1016/s0005-1098(03)00172-9

Google Scholar

[8] J. C. Lo, M. L. Lin, Observer-based robust H∞ control for fuzzy systems using two-step procedure, IEEE Trans. Fuzzy Systems, vol. 12, pp.350-359, (2004).

DOI: 10.1109/tfuzz.2004.825992

Google Scholar

[9] J. C. Lo, M. L. Lin, Robust H∞ nonlinear control via fuzzy static output feedback, IEEE Trans. Circuits and Systems, vol. 50, pp.1494-1502, (2003).

DOI: 10.1109/tcsi.2003.818623

Google Scholar

[10] S. W. Kau, H. J. Lee, C. M. Yang, Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties, Fuzzy Sets and Systems, Vol. 158, pp.135-146, (2007).

DOI: 10.1016/j.fss.2006.09.010

Google Scholar

[11] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Trans. Fuzzy Syst., vol. 9, pp.324-332, (2001).

DOI: 10.1109/91.919253

Google Scholar

[12] C. H. Fang, Y. S. Liu, S. W. Hong, C. H. Lee, A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems, IEEE Trans. Fuzzy Systems, vol. 14, pp.386-397, (2006).

DOI: 10.1109/tfuzz.2006.876331

Google Scholar

[13] E. Kim, H. Lee, New Approaches to Relaxed Quadratic Stability condition of Fuzzy Control systems, IEEE Trans. Fuzzy Systems, vol. 8, pp.523-534, (2000).

DOI: 10.1109/91.873576

Google Scholar

[14] C. Lin, Q. G. Wang and T. H. Lee, Improvement on observer-based H∞ control for T-S fuzzy systems, Automatica, vol. 41, pp.1651-1656, (2005).

Google Scholar